Skip to main content
Log in

NOx-Sorbing Metal Oxides, MnOx–CeO2. Oxidative NO Adsorption and NOx–H2 Reaction

  • Published:
Catalysis Surveys from Japan Aims and scope Submit manuscript

Abstract

(n)MnOx–(1−n)CeO2 binary oxides have been studied for the sorptive NO removal and subsequent reduction of NOx sorbed to N2 at low temperatures (≤150 °C). The solid solution with a fluorite-type structure was found to be effective for oxidative NO adsorption, which yielded nitrate (NO 3) and/or nitrite (NO 2) species on the surface depending on temperature, O2 concentration in the gas feed, and composition of the binary oxide (n). A surface reaction model was derived on the basis of XPS, TPD, and DRIFTS analyses. Redox of Mn accompanied by simultaneous oxygen equilibration between the surface and the gas phase promoted the oxidative NO adsorption. The reactivity of the adsorbed NOx toward H2 was examined for MnOx–CeO2 impregnated with Pd, which is known as a nonselective catalyst toward NO–H2 reaction in the presence of excess oxygen. The Pd/MnOx–CeO2 catalyst after saturated by the NO uptake could be regenerated by micropulse injections of H2 at 150 °C. Evidence was presented to show that the role of Pd is to generate reactive hydrogen atoms, which spillover onto the MnOx–CeO2 surface and reduce nitrite/nitrate adsorbing thereon. Because of the lower reducibility of nitrate and the competitive H2–O2 combustion, H2–NO reaction was suppressed to a certain extent in the presence of O2. Nevertheless, Pd/MnOx–CeO2 attained 65% NO-conversion in a steady stream of 0.08% NO, 2% H2, and 6% O2 in He at as low as 150 °C, compared to ca. 30% conversion for Pd/γ–Al2O3 at the same temperature. The combination of NOx-sorbing materials and H2-activation catalysts is expected to pave the way to development of novel NOx-sorbing catalysts for selective deNOx at very low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Machida, in Catalysis, Vol. 15 (The Royal Society of Chemistry, Cambridge, 2000) ch. 3.

    Google Scholar 

  2. H. Arai and M. Machida, Catal. Today 22 (1994) 97.

    Google Scholar 

  3. K. Tabata, H. Fukui, S. Kohiki, N. Mizuno and M. Misono, Chem. Lett. (1988) 799.

  4. M. Machida, K. Yasuoka, K. Eguchi and H. Arai, J. Chem. Soc. Chem. Commun. 1165 (1990).

  5. K. Eguchi, M. Watabe, S. Ogata and H. Arai, Bull. Chem. Soc. Jpn. 68 (1995) 1739.

    Google Scholar 

  6. K. Eguchi, M. Watabe, M. Machida and H. Arai, Catal. Today 27 (1996) 297.

    Google Scholar 

  7. S. Hodjati, P. Bernhardt, C. Petit, V. Pitchon and A. Kiennemann, Appl. Catal. B: Environ. 19 (1998) 209.

    Google Scholar 

  8. S. Hodjati, P. Bernhardt, C. Petit, V. Pitchon and A. Kiennemann, Appl. Catal. B: Environ. 26 (2000) 5.

    Google Scholar 

  9. M. Machida, S. Ogata, K. Yasuoka, K. Eguchi and H. Arai, Proc. Int. Cong. Catal., eds., L. Guczi, F. Solymosi and P. Tetenyi, (Elsevier: Amsterdam, 1993) p. 2645.

    Google Scholar 

  10. M. Machida, H. Murakami, K. Eguchi and H. Arai, J. Chem. Soc. Chem. Commun. (1995) 485.

  11. M. Machida, H. Murakami and T. Kijima, J. Mater. Chem. 4 (1994) 1621.

    Google Scholar 

  12. M. Machida, H. Murakami, T. Kitsubayashi and T. Kijima, Chem. Mater. 8 (1996) 197.

    Google Scholar 

  13. M. Machida, H. Murakami, T. Kitsubayashi and T. Kijima, Chem. Mater. 9 (1997) 135.

    Google Scholar 

  14. M. Machida, H. Murakami, T. Kitsubayashi and T. Kijima, Appl. Catal. B: Environ. 17 (1996) 195.

    Google Scholar 

  15. M. Machida, D. Kurogi and T. Kijima, Chem. Mater. 12 (2000) 3158.

    Google Scholar 

  16. M. Machida, D. Kurogi and T. Kijima, Chem. Mater. 12 (2000) 3165.

    Google Scholar 

  17. M. Machida, A. Yoshii and T. Kijima, Int. J. Inorg. Mater. 2 (2000) 413.

    Google Scholar 

  18. F.G. Galasso, Structure and Properties of Inorganic Solids, (Pergamon, Oxford, 1970), p. 115.

    Google Scholar 

  19. M.F. Luo, X.X. Yuan and Z.M. Zheng, Appl. Catal. A: General. 175 (1998) 121.

    Google Scholar 

  20. CRC Handbook of Chemistry and Physics, 72nd Edn.; ed., D.R. Lide, (CRC Press, Boston, 1991).

    Google Scholar 

  21. Y. Hirao, C. Yokoyama and M. Misono, J. Chem. Soc. Chem. Commun. (1996) 597.

  22. A. Ueda and M. Haruta, Appl. Catal. B: Environ. 18 (1998) 115.

    Google Scholar 

  23. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (Wiley, New York, 1986).

    Google Scholar 

  24. J.W. London and A.T. Bell, J. Catal. 31 (1973) 32.

    Google Scholar 

  25. C.H. Rochester and S.A. Tppham, J. Chem. Soc. Faraday Trans. 75 (1979) 872.

    Google Scholar 

  26. G. Busca and V. Lorenzelli, J. Catal. 72 (1981) 303.

    Google Scholar 

  27. M.J.D. Low and R.T. Yang, J. Catal. 34 (1974) 479.

    Google Scholar 

  28. M. Machida, D. Kurogi and T. Kijima, J. Mater. Chem. 4 (2001) 1621.

    Google Scholar 

  29. N. Miyoshi, S. Matsumoto, K. Katoh, T. Tanaka, J. Harada, N. Takahashi, K. Yokota, M. Sugiura and K. Kasahara, SEA Paper (1995) 950809.

  30. K.Y. Lee, M. Misono and K. Watanabe, Appl. Catal. B: Environ. 13 (1997) 241.

    Google Scholar 

  31. M. Machida, D. Kurogi and T. Kijima, Stud. Surf. Sci. Catal. 138 (2001) 267.

    Google Scholar 

  32. K. Yokota, M. Fukui and T. Tanaka, Appl. Surf. Sci. 121/122 (1997) 273.

    Google Scholar 

  33. B. Frank, G. Emig and A. Renken, Appl. Catal. B: Environ. 19 (1998) 45.

    Google Scholar 

  34. R. Burch and M.D. Coleman, Appl. Catal. B: Environ. 23 (1999) 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machida, M. NOx-Sorbing Metal Oxides, MnOx–CeO2. Oxidative NO Adsorption and NOx–H2 Reaction. Catalysis Surveys from Asia 5, 91–102 (2002). https://doi.org/10.1023/A:1015160919161

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015160919161

Navigation