Skip to main content
Log in

Diffusion Coefficients Estimated by Dynamic Fluorescence Quenching at High Pressure: Pyrene, 9,10-Dimethylanthracene, and Oxygen in n-Hexane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The fluorescence quenching of pyrene (PY) by carbon tetrabromide (CBr4) at pressures of up to 400 MPa in n-hexane was investigated. It was found that the fluorescence quenching is not fully, but nearly, diffusion-controlled. From the pressure-induced solvent viscosity dependence, the quenching rate constant, k q , was separated into the contributions of the bimolecular rate constant in the solvent cage, k bim, and that for diffusion, k diff. Using the values of k diff separated, together with those of the diffusion coefficient of CBr4, the diffusion coefficients of PY were successfully estimated. This analysis was applied to the quenching systems of 9,10-dimethylanthracene (DMEA)/CBr4 and of PY/O2 and DMEA/O2 that were studied previously. Using the values of k diff for these systems, together with those of the corresponding diffusion coefficients of the fluorophore or quencher, the diffusion coefficients of DMEA and O2 were also evaluated. Based on the results, the pressure-induced solvent viscosity, η, dependence on the diffusion coefficients is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. B. Birks, Photophysics of Aromatic Molecules (Wiley–Interscience, New York, 1970), p. 518.

    Google Scholar 

  2. J. Saltiel and B. W. Atwater, Advances in Photochemistry (Wiley–Interscience, New York, 1987), Vol. 14, p. 1.

    Google Scholar 

  3. J. B. Birks, Organic Molecular Photophysics (Wiley, New York, 1973), p. 403.

    Google Scholar 

  4. S. A. Rice, in Comprehensive Chemical Kinetics. Diffusion-Limited Reactions, C. H. Bamford, C. F. H. Tripper, and R. G. Compton, eds. (Elsevier, Amsterdam, 1985), Vol. 25.

    Google Scholar 

  5. W. R. Ware, J. Phys. Chem. 66:455 (1962).

    Google Scholar 

  6. W. R. Ware and J. S. Novros, J. Phys. Chem. 70:3246 (1966).

    Google Scholar 

  7. T. M. Nemzek and W. R. Ware, J. Chem. Phys. 62:477 (1975).

    Google Scholar 

  8. H. Yasuda, A. D. Scully, S. Hirayama, M. Okamoto, and F. Tanaka, J. Am. Chem. Soc. 112:6847 (1990).

    Google Scholar 

  9. S. Hirayama, H. Yasuda, A. D. Scully, and M. Okamoto, J. Phys. Chem. 98:4609 (1994).

    Google Scholar 

  10. M. Okamoto, F. Tanaka, and S. Hirayama, J. Phys. Chem. A 102:10703 (1998).

    Google Scholar 

  11. M. Okamoto, J. Phys. Chem. A 104:5029 (2000).

    Google Scholar 

  12. M. Okamoto, J. Phys. Chem. A 104:7518 (2000).

    Google Scholar 

  13. M. Okamoto, O. Wada, F. Tanaka, and S. Hirayama, J. Phys. Chem. A 105:566 (2001).

    Google Scholar 

  14. M. Okamoto and O. Wada, J. Photochem. Photobiol. A Chem. 138:87 (2001).

    Google Scholar 

  15. M. Okamoto and F. Tanaka, submitted for publication.

  16. J. H. Dymond and L. A. Woolf, J. Chem. Soc. Faraday Trans. I 78:991 (1982).

    Google Scholar 

  17. M. Okamoto and H. Teranishi, J. Phys. Chem. 88:5644 (1984).

    Google Scholar 

  18. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 61:57 (1926).

    Google Scholar 

  19. D. W. Brazier and G. R. Freeman, Can. J. Chem. 47:893 (1969).

    Google Scholar 

  20. C. M. B. P. Oliveira and W. A. Wakeham, Int. J. Thermophys. 13:773 (1992).

    Google Scholar 

  21. M. Okamoto and S. Sasaki, J. Phys. Chem. 95:6548 (1991).

    Google Scholar 

  22. The radial distribution function, g(rMgQ), at the closest approach distance, rMgQ(=rMg+rQ), the sum of the radius of the hard-sphere solutes in a hard-sphere solvent with radius, rS, is given by [23] g(rMgQ)= 11-y +3y(1-y)2 Rrred rS S+ 2y2 (1-y)3 Rrred rS S2 (A1) where rred=rMgrQ/rMgQ, and y is the packing fraction, given in terms of the molar volume of the solvent, VS, by y= 4NApr3 S 3VS (A2) By using the values of rS, rQ, and rMg estimated by the method of Bondi [24], together with the data on the solvent density [18–20], g(rMgQ) was calculated by Eq. (A1).

  23. Y. Yoshimura and M. Nakahara, J. Chem. Phys. 81:4080 (1984).

    Google Scholar 

  24. A. Bondi, J. Phys. Chem. 68:441 (1964).

    Google Scholar 

  25. D. F. Evans, T. Tominaga, and C. Chan, J. Solut. Chem. 8:461(1979).

    Google Scholar 

  26. D. F. Evans, T. Tominaga, and H. T. Davis, J. Chem. Phys. 74:1298 (1981).

    Google Scholar 

  27. A. Spernol and K. Wirtz, Z. Naturforsch. 8A:522 (1953).

    Google Scholar 

  28. A. Gierer and K. Wirtz, Z. Naturforsch. 8A:532 (1953).

    Google Scholar 

  29. The values of Fsw i (full) and fSW i (trunc) were evaluated by Eq. (10) and by neglecting the second parenthetical quantity in Eq. (10), respectively [2].

  30. A. Schumpe and P. Lühring, J. Chem. Eng. Data 35:24 (1990).

    Google Scholar 

  31. E. Sada, S. Kito, T. Oda, and Y. Ito, Chem. Eng. J. 10:155 (1975).

    Google Scholar 

  32. A. Akgerman and J. L. Gainer, Ind. Eng. Fundam. 11:373 (1972).

    Google Scholar 

  33. B. A. Kowert and N. C. Dang, J. Phys. Chem. A 103:779 (1999).

    Google Scholar 

  34. J. Jonas, Acc. Chem. Res. 17:74 (1984).

    Google Scholar 

  35. J. Jonas, D. Hasha, and S. G. Huang, J. Phys. Chem. 84:109 (1980).

    Google Scholar 

  36. J. Jonas, D. Hasha, and S. G. Huang, J. Chem. Phys. 71:3996 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, M. Diffusion Coefficients Estimated by Dynamic Fluorescence Quenching at High Pressure: Pyrene, 9,10-Dimethylanthracene, and Oxygen in n-Hexane. International Journal of Thermophysics 23, 421–435 (2002). https://doi.org/10.1023/A:1015157419045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015157419045

Navigation