Skip to main content
Log in

On the Transport of Lipoplexes Through Cystic Fibrosis Sputum

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of this study was to examine the extent to which plasmid DNA (pDNA) complexed to cationic liposomes diffuse through cystic fibrosis (CF) sputum. The influence of the physical and chemical properties of the sputa was evaluated. We further investigated whether degradation of the sputa by recombinant human DNase I (rhDNase I) enhances the transport.

Methods. The transport of lipoplexes was studied through layers of CF sputa placed between the donor and acceptor compartment of vertical diffusion chambers. The content of the acceptor compartment was analyzed by confocal fluorescence microscopy, gel electrophoresis and Southern blotting. The influence of linear DNA present in the CF sputa on the size, surface charge and gene expression of the lipoplexes was evaluated by dynamic light scattering, particle electrophoresis and transfection experiments.

Results. Lipoplexes were observed in the acceptor compartments. However, the percent of diffused lipoplexes was low: 0.05% ± 0.01%. It was found that both steric obstruction by the sputa as well as the “long” distance the lipoplexes have to travel were responsible for this low transport. Surprisingly, the transport occurred better through more viscoelastic sputa. The DNA in the CF sputa also retarded the transport, which was attributed to aggregation of the lipoplexes by the DNA. Finally, rhDNase I moderately enhanced the diffusion of lipoplexes.

Conclusions. CF sputum drastically retards the diffusion of lipoplexes. DNA in the sputa aggregates the lipoplexes. This may lower the transport of lipoplexes through the sputa and gene expression. Pretreatment of CF patients with rhDNase I may enhance the efficiency of CF gene therapy, as it allows a better transport of the lipoplexes through the sputum and as it partly removes the sputum which will result in a thinner sputum layer on top of the epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. R. Riordan, J. M. Rommens, B.-S. Kerem, N. Alon, R. Rozmahei, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J.-L. Chou, M. L. Drumm, M. C. Iannuzzi, F. S. Collins, and L.-C. Tsui. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073 (1989).

    Google Scholar 

  2. R. G. Crystal. The gene as the drug. Nat Med 1:15–17 (1995).

    Google Scholar 

  3. J. A. Wagner, A. C. Chao, and P. Gardner. Molecular strategies for therapy of cystic fibrosis. Annu. Rev. Pharmacol. Toxicol. 35:257–276 (1995).

    Google Scholar 

  4. R. J. Korst, N. G. McElvaney, C. S. Chu, M. A. Rosenfeld, A. Mastrangeli, J. Hay, S. L. Brody, N. T. Eissa, C. Danel, H. A. Jaffe, and R. G. Crystal. Gene therapy for the respiratory manifestations of cystic fibrosis. Am. J. Respir. Crit. Care Med. 151:S75–S87 (1995).

    Google Scholar 

  5. D. Geddes and E. Alton. Cystic fibrosis clinical trials. Adv. Drug Deliv. Rev. 30:205–217 (1998).

    Google Scholar 

  6. E. W. F. W. Alton, M. Stern, R. Farley, A. Jaffe, S. L. Chadwick, J. Phillips, J. Davies, S. N. Smith, J. Browning, M. G. Davies, M. E. Hodson, S. R. Durham, D. Li, P. K. Jeffery, M. Scallan, R. Balfour, S. J. Eastman, S. H. Cheng, A. E. Smith, D. Meeker, and D. M. Geddes. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 353:947–954 (1999).

    Google Scholar 

  7. C. Kitson, B. Angel, D. Judd, S. Rothery, N. J. Severs, A. Dewar, L. Huang, S. C. Wadsworth, S. H. Cheng, D. M. Geddes, and E. W. F. W. Alton. The extra-and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Ther. 6:534–546 (1999).

    Google Scholar 

  8. C. A. Sheils, J. Käs, W. Travassos, P. G. Allen, P. A. Janmey, M. E. Wohl, and T. P. Stossel. Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. Am. J. Pathol. 148:919–927 (1996).

    Google Scholar 

  9. R. J. Mrsny, A. L. Daugherty, S. M. Short, R. Widmer, M. W. Siegel, and G. A. Keller. Distribution of DNA and alginate in purulent cystic fibrosis sputum: implications to pulmonary targeting strategies. J. Drug Target. 4:233–243 (1996).

    Google Scholar 

  10. S. Girod, C. Galabert, A. Lecuire, J. M. Zahm, and E. Puchelle. Phospholipid composition and surface-active properties of tracheobronchial secretions from patients with cystic fibrosis and chronic obstructive pulmonary diseases. Pediatr. Pulmonol. 13:22–27 (1992).

    Google Scholar 

  11. N. N. Sanders, S. C. De Smedt, and J. Demeester. The physical properties of biogels and their permeability for macromolecular drugs and colloidal drug carriers. J. Pharm. Sci. 89:835–849 (2000).

    Google Scholar 

  12. M. Stern, N. J. Caplen, J. E. Browning, U. Griesenbach, F. Sorgi, L. Huang, D. C. Gruenert, C. Marriot, R. G. Crystal, D. M. Geddes, and E. W. F. W. Alton. The effect of mucolytic agents on gene transfer across a CF sputum barrier in vitro. Gene Ther. 5:91–98 (1998).

    Google Scholar 

  13. N. N. Sanders, S. C. De Smedt, E. Van Rompaey, P. Simoens, F. DeBaets, and J. Demeester. Cystic fibrosis sputum-A barrier to the transport of nanospheres. Am. J. Respir. Crit. Care Med. 162:1905–1911 (2000).

    Google Scholar 

  14. N. N. Sanders, E. Van Rompaey, S. C. De Smedt, and J. Demeester. Structural alterations of gene complexes by cystic fibrosis sputum. Am. J. Respir. Crit. Care Med. 164:486–493 (2001).

    Google Scholar 

  15. M. A. Perricone, D. D. Rees, C. R. Sacks, K. A. Smith, J. M. Kaplan, and J. A. St-George. Inhibitory effect of cystic fibrosis sputum on adenovirus-mediated gene transfer in cultured epithelial cells. Hum. Gene Ther. 11:1997–2008 (2000).

    Google Scholar 

  16. J. O. Radler, I. Koltover, T. Salditt, and C. R. Safinya. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814 (1997).

    Google Scholar 

  17. J. Berger, J. Hauber, R. Hauber, R. Geiger, and B. R. Cullen. Secreted placental alkaline phosphatase: A powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66:1–11 (1988).

    Google Scholar 

  18. Y. Xu, S. W. Hui, P. Frederik, and F. C. Szoka. Physicochemical characterization and purification of cationic lipoplexes. Biophys. J. 77:341–353 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefaan C. De Smedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, N.N., Van Rompaey, E., De Smedt, S.C. et al. On the Transport of Lipoplexes Through Cystic Fibrosis Sputum. Pharm Res 19, 451–456 (2002). https://doi.org/10.1023/A:1015139527747

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015139527747

Navigation