Skip to main content
Log in

Dimension Concepts and Reduced Dimensions in Toxicological QShAR Databases as Tools for Data Quality Assessment

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The dimensions of databases can be defined based on a variety of concepts, ranging from the standard tools of principal component analysis to context-biased approaches. The effective dimensions of databases, in particular the effective dimensions involving continua such as electron density data, provide a set of important tools for database comparisons and for the evaluation of some aspects of database quality. The problems associated with database comparisons and database mergers, such as those occurring in the process of database unification in the actual merger of two pharmaceutical companies, provide challenging tasks and opportunities for data science. Some of the tools for effective dimension reduction and dimension expansion are reviewed in the context of database quality control and conditions for database compatibility are presented. A common misconception affecting data sampling techniques for data quality evaluation is discussed and methods for circumventing the associated sampling errors are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Blum and J.I. Rosenblatt, Probability and Statistics (Saunders, Philadelphia, NJ, 1972).

    Google Scholar 

  2. O. Kempthorne and L. Folks, Probability, Statistics and Data Analysis (Iowa State Univ. Press, Ames, IA, 1971).

    Google Scholar 

  3. P.G. Hoel, S. Port and C.L. Stone, Introduction to Probability Theory (Houghton Mifflin, Boston, USA, 1971).

    Google Scholar 

  4. T.S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach (Academic Press, New York, 1967).

    Google Scholar 

  5. G.A. Mihram, Simulation: Statistical Foundations and Methodology (Academic Press, New York, 1972).

    Google Scholar 

  6. B.W. Lindgren, Statistical Theory (Macmillan Co., New York, 1968).

    Google Scholar 

  7. M.H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, MA, 1975).

    Google Scholar 

  8. P.D. Lark, B.C. Craven and R.C.L. Bosworth, The Handling of Chemical Data (Pergamon, Oxford, 1968).

    Google Scholar 

  9. A. Rényi, Probability (Tankönyvkiadó, Budapest, 1973).

    Google Scholar 

  10. R.R. Colwell (ed.), Biomolecular Data, A Resource in Transition (Oxford Univ. Press, 1989, Oxford, UK).

    Google Scholar 

  11. A.M. Lesk and C. Chothia, How different amino acid sequences determine similar protein structures: The structure and evolutionary dynamics of the globins, J. Mol. Biol. 136 (1980) 225–270.

    PubMed  Google Scholar 

  12. A.M. Lesk and C. Chothia, The response of protein structures to amino acid sequence changes, Philos. Trans. Roy. Soc. London ser. A 317 (1986) 345–356.

    Google Scholar 

  13. L.T.J. Delbaere, G.D. Brayer and M.N.G. James, Comparison of the predicted model of α-lytic protease with the X-ray structure, Nature 279 (1979) 165–167.

    PubMed  Google Scholar 

  14. C. Chothia, A.M. Lesk, M. Levitt, A.G. Amit, R.A. Mariuzza, S.E.V. Phillips and R.J. Poljak, The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure, Science 233 (1986) 755–758.

    PubMed  Google Scholar 

  15. T.C. Hodgman, The elucidation of protein function from its amino acid sequence, CABIOS 2 (1986) 181–187.

    PubMed  Google Scholar 

  16. T.A. Jones and T. Thirup, Using known substructures in protein model building and crystallography, EMBO Journal 5 (1986) 819–822.

    PubMed  Google Scholar 

  17. W. Kabsch and C. Sander, On the use of sequence homologies to predict protein structure: Identical pentapeptides can have completely different conformations, Proc. Nat. Acad. Sci. USA 81 (1984) 1075–1078.

    PubMed  Google Scholar 

  18. W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22 (1983) 2577–2637.

    PubMed  Google Scholar 

  19. A. Morffew, S.J. Todd and X. Snellgrove, The use of a relational database for holding molecule data in a molecular graphics system, Computers and Chemistry 7 (1983) 9–16.

    Google Scholar 

  20. S.B. Needleman and X. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48 (1970) 443–453.

    PubMed  Google Scholar 

  21. P.G. Mezey, Non-visual shape analysis by computer, in: New Data Challanges in Our Information Age, eds. P.S. Glaeser and M.T.L. Millward (CODATA, Paris, France, 1994) pp. 18–27.

    Google Scholar 

  22. P.G. Mezey, Shape-data processing in the natural sciences and technology, in: Data and Knowledge in a Changing World, Modeling Complex Data for Creating Information, CODATA Series, eds. J.-E. Dubois and N. Gershon (Springer, Berlin, 1996) pp. 147–154.

    Google Scholar 

  23. B.J. McConkey, P.G. Mezey, D.G. Dixon and B.M. Greenberg, Fractional simplex designs for interaction screening in complex mixtures, Biometrics 56 (2000) 824–832.

    PubMed  Google Scholar 

  24. P.G. Mezey, Shape-similarity measures for molecular bodies: A 3D topological approach to QShAR, J. Chem. Inf. Comput. Sci. 32 (1992) 650–656.

    Google Scholar 

  25. P.G. Mezey, Z. Zimpel, P. Warburton, P.D. Walker, D.G. Irvine, D.G. Dixon and B. Greenberg, A high-resolution shape-fragment database for toxicological shape analysis of PAHs, J. Chem. Inf. Comput. Sci. 36 (1996) 602–611.

    Google Scholar 

  26. P.G.Mezey, Quantitative shape-activity relations (QShAR), molecular shape analysis, charge cloud holography, and computational microscopy, in: QSARs Environmental Toxicology-VIII.QSARs for Predicting Endocrine Disruption, Chemical Persistence and Effects, ed. J.D. Walker (SETAC) in press (accepted May 20, 1998).

  27. P.G. Mezey, Z. Zimpel, P.Warburton, P.D.Walker, D.G. Irvine, X.-D. Huang, D.G. Dixon and B.M. Greenberg, Use of QShAR to model the photoinduced toxicity of PAHs: Electron density shape features accurately predict toxicity, Environ. Toxicol. Chem. 17 (1998) 1207–1215.

    Google Scholar 

  28. P.G. Mezey, Molecular structure-reactivity-toxicity relationships, in: Soil Chemistry and Ecosystem Health, ed. P.M. Huang (SSSA, Pittsburgh, PA, 1998) pp. 21–43.

    Google Scholar 

  29. P.G. Mezey, Relations between computational and experimental engineering of molecules from molecular fragments, Molec. Engrg. 8 (1999) 235–250.

    Google Scholar 

  30. J.-E. Dubois and P.G. Mezey, A functional group database: A charge density-DARC approach, Molec. Engrg. 8 (1999) 251–265.

    Google Scholar 

  31. P.G. Mezey, Functional groups in quantum chemistry, Adv. Quant. Chem. 27 (1996) 163–222.

    Google Scholar 

  32. P.G. Mezey, Computational microscopy: Pictures of proteins, Pharmaceutical News 4 (1997) 29–34.

    Google Scholar 

  33. P.G. Mezey and P.D. Walker, Fuzzy molecular fragments in drug research, Drug Discovery Today (Elsevier Trend Journal) 2 (1997) 6–11.

    Google Scholar 

  34. Q. Du, G.A. Arteca and P.G. Mezey, Heuristic lipophilicity potential for computer-aided rational drug design, J. Comput. Aided Mol. Design 11 (1997) 503–515.

    Google Scholar 

  35. Q. Du and P.G. Mezey, Heuristic lipophilicity potential for computer-aided rational drug design: Optimizations of screening functions and parameters, J. Comput. Aided Mol. Design 12 (1998) 451–470.

    Google Scholar 

  36. P.G. Mezey, K. Fukui, S. Arimoto and K. Taylor, Polyhedral shapes of functional group distributions in biomolecules and related similarity measures, Internat. J. Quantum Chem. 66 (1998) 99–105.

    Google Scholar 

  37. P.G. Mezey, Molecular similarity and host-guest interactions Theoret. Comput. Chem. 6 (1999) 593–612; chapter 23 in: Pauling's Legacy: Modern Modelling of the Chemical Bond, eds. Z.Maksic and W.J. Orville-Thomas (Elsevier, Amsterdam, 1999) pp. 593–612.

    Google Scholar 

  38. P.G. Mezey, Topological Methods of Molecular Shape Analysis: Continuum Models and Discretization, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 51 (2000) 267–278.

    Google Scholar 

  39. P.D. Walker and P.G. Mezey, Molecular electron density lego approach to molecule building, J. Amer. Chem. Soc. 115 (1993) 12423–12430.

    Google Scholar 

  40. P.G. Mezey, Quantum chemical shape: New density domain relations for the topology of molecular bodies, functional groups, and chemical bonding, Canad. J. Chem. 72 (1994) 928–935 (special issue dedicated to Prof. J.C. Polanyi).

    Google Scholar 

  41. P.G. Mezey, Iterated similarity sequences and shape ID numbers for molecules, J. Chem. Inf. Comput. Sci. 34 (1994) 244–247.

    Google Scholar 

  42. P.D. Walker and P.G. Mezey,Ab initio quality electron densities for proteins: A MEDLA approach, J. Amer. Chem. Soc. 116 (1994) 12022–12032.

    Google Scholar 

  43. P.D. Walker and P.G. Mezey, Realistic, Detailed images of proteins and tertiary structure elements: Ab initio quality electron density calculations for bovine insulin, Canad. J. Chem. 72 (1994) 2531–2536.

    Google Scholar 

  44. P.D. Walker and P.G. Mezey, A new computational microscope for molecules: High resolution MEDLA images of taxol and HIV-1 protease, using additive electron density fragmentation principles and fuzzy set methods, J. Math. Chem. 17 (1995) 203–234.

    Google Scholar 

  45. P.D.Walker and P.G.Mezey, Towards similarity measures for macromolecular bodies: MEDLA test calculations for substituted benzene systems, J. Comput. Chem. 16 (1995) 1238–1249.

    Google Scholar 

  46. P.G. Mezey, Shape analysis of macromolecular electron densities, Struct. Chem. 6 (1995) 261–270.

    Google Scholar 

  47. P.G. Mezey, Molecular similarity measures for assessing reactivity, in: Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, ed. R. Carbó (Kluwer Academic, Dordrecht, 1995) pp. 57–76.

    Google Scholar 

  48. P.G. Mezey, Methods of molecular shape-similarity analysis and topological shape design, in: Molecular Similarity in Drug Design, ed. P.M. Dean (Chapman & Hall/Blackie, Glasgow, 1995) pp. 241–268.

    Google Scholar 

  49. P.G. Mezey, Density domain bonding topology and molecular similarity measures, in: Topics in Current Chemistry, Vol. 173, Molecular Similarity, ed. K. Sen (Springer, Heidelberg, 1995) pp. 63–83.

    Google Scholar 

  50. P.D. Walker, P.G. Mezey, G.M. Maggiora, M.A. Johnson and J.D. Petke, Application of the shape group method to conformational processes: Shape and conjugation changes in the conformers of 2-phenyl pyrimidine, J. Comput. Chem. 16 (1995) 1474–1482.

    Google Scholar 

  51. P.D. Walker, G.M. Maggiora, M.A. Johnson, J.D. Petke and P.G. Mezey, Shape group analysis of molecular similarity: Shape similarity of six-membered aromatic ring systems, J. Chem. Inf. Comput. Sci. 35 (1995) 568–578.

    Google Scholar 

  52. P.G. Mezey, Local shape analysis of macromolecular electron densities, in: Computational Chemistry: Reviews and Current Trends, Vol. 1, ed. J. Leszczynski (World Scientific, Singapore, 1996) pp. 109–137.

    Google Scholar 

  53. P.G. Mezey, Descriptors of molecular shape in 3D, in: From Chemical Topology to Three-Dimensional Geometry, ed. A.T. Balaban (Plenum, New York, 1997) pp. 25–42.

    Google Scholar 

  54. P.G. Mezey, Fuzzy measures of molecular shape and size, in: Fuzzy Logic in Chemistry, ed. D.H. Rouvray (Academic Press, San Diego, CA, 1997) pp. 139–223.

    Google Scholar 

  55. P.G. Mezey, Quantum chemistry of macromolecular shape, Internat. Rev. Phys. Chem. 16 (1997) 361–388.

    Google Scholar 

  56. P.G. Mezey, Shape in quantum chemistry, in: Conceptual Trends in Quantum Chemistry, Vol. 3, eds. J.-L. Calais and E.S. Kryachko (Kluwer Academic, Dordrecht, 1997) pp. 519–550.

    Google Scholar 

  57. P.G. Mezey, Shape analysis, in: Encyclopedia of Computational Chemistry, eds. P.V.R. Schleyer, N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer III and P.R. Schreiner, Vol. 4 (Wiley, Chichester, 1998) pp. 2582–2589.

    Google Scholar 

  58. P.G. Mezey, Combinatorial aspects of biomolecular shape analysis, Bolyai Soc.Math. Stud. 7 (1999) 323–332.

    Google Scholar 

  59. P.G. Mezey, Shape in Chemistry: an Introduction to Molecular Shape and Topology (VCH, New York, 1993).

    Google Scholar 

  60. P.G. Mezey, Group theory of electrostatic potentials: A tool for quantum chemical drug design, Internat. J. Quantum Chem. Quant. Biol. Sympos. 12 (1986) 113–122.

    Google Scholar 

  61. P.G. Mezey, Tying knots around chiral centres: Chirality polynomials and conformational invariants for molecules, J. Amer. Chem. Soc. 108 (1986) 3976–3984.

    Google Scholar 

  62. P.G. Mezey, The shape of molecular charge distributions: Group theory without symmetry, J. Comput. Chem. 8 (1987) 462–469.

    Google Scholar 

  63. P.G. Mezey, Group theory of shapes of asymmetric biomolecules, Internat. J. Quantum Chem. Quant. Biol. Sympos. 14 (1987) 127–132.

    Google Scholar 

  64. P.G. Mezey, From geometrical molecules to topological molecules: A quantum mechanical view, in: Molecules in Physics, Chemistry and Biology, ed. J. Maruani, Vol. II (Reidel, Dordrecht, 1988) Chapter 2, pp. 61–81.

    Google Scholar 

  65. J. Maruani and P.G. Mezey, The concept of "syntopy": A continuous extension of the symmetry concept for quasi-symmetric structures using fuzzy set theory, Compt. Rend. Ser. II 305 (1987) 1051–1054; 306 (1988) 1141.

    Google Scholar 

  66. G.A. Arteca and P.G. Mezey, A topological characterization for simple molecular surfaces, J. Mol. Struct. Theochem 166 (1988) 11–16.

    Google Scholar 

  67. G.A. Arteca, V.B. Jammal, P.G. Mezey, J.S. Yadav, M.A. Hermsmeier and T.M. Gund, Shape group studies of molecular similarity: Relative shapes of Van der Waals and electrostatic potential surfaces of nicotinic agonists, J. Molec. Graphics 6 (1988) 45–53.

    Google Scholar 

  68. P.G. Mezey, Shape group studies of molecular similarity: Shape groups and shape graphs of molecular contour surfaces, J. Math. Chem. 2 (1988) 299–323.

    Google Scholar 

  69. G.A. Arteca, V.B. Jammal and P.G. Mezey, Shape group studies of molecular similarity and regioselectivity in chemical reactions, J. Comput. Chem. 9 (1988) 608–619.

    Google Scholar 

  70. G.A. Arteca and P.G. Mezey, Shape characterization of some molecular model surfaces, J. Comput. Chem. 9 (1988) 554–563.

    Google Scholar 

  71. P.G. Mezey, Global and local relative convexity and oriented relative convexity; application to molecular shapes in external fields, J. Math. Chem. 2 (1988) 325–346.

    Google Scholar 

  72. G.A. Arteca and P.G. Mezey, Methods of topological characterization of molecular surfaces, Folia Chimica Theoretica Latina 15 (1988) 115–154.

    Google Scholar 

  73. G.A. Arteca and P.G.Mezey, Shape description of conformationally flexible molecules: Application to two-dimensional conformational problems, Internat. J. Quantum Chem. Quant. Biol. Sympos. 15 (1988) 33–54.

    Google Scholar 

  74. F. Harary and P.G. Mezey, Graphical shapes: Seeing graphs of chemical curves and molecular surfaces, J. Math. Chem. 2 (1988) 377–389.

    Google Scholar 

  75. J. Pipek and P.G. Mezey, Dependence of MO shapes on a continuous measure of delocalization, Internat. J. Quantum Chem. Sympos. 22 (1988) 1–13.

    Google Scholar 

  76. G.A. Arteca and P.G. Mezey, Molecular conformation and molecular shape: A discrete characterization of continua of van der Waals surfaces, Internat. J. Quantum Chem. 34 (1988) 517–526.

    Google Scholar 

  77. P.G. Mezey, Topology of molecular shape and chirality, in: New Theoretical Concepts for Understanding Organic Reactions, eds. J. Bertran and I.G. Csizmadia, Nato ASI Series (Kluwer Academic, Dordrecht, 1989) pp. 77–99.

    Google Scholar 

  78. G.A. Arteca and P.G.Mezey, Shape group theory of van derWaals surfaces, J.Math. Chem. 3 (1989) 43–71.

    Google Scholar 

  79. G.A. Arteca and P.G. Mezey, Discrete characterization of crossections of molecular surfaces, Theoret. Chim. Acta 75 (1989) 333–352.

    Google Scholar 

  80. G.A. Arteca and P.G.Mezey, Molecular similarity and molecular shape changes along reaction paths: A topological analysis and consequences on the Hammond postulate, J. Phys. Chem. 93 (1989) 4746–4751.

    Google Scholar 

  81. P.G. Mezey, The topology of molecular surfaces and shape graphs, in: Computational Chemical Graph Theory, ed. D.H. Rouvray (Nova Publications, New York, 1990) pp. 175–197.

    Google Scholar 

  82. P.G. Mezey, Three-dimensional topological aspects of molecular similarity, in: Concepts and Applications of Molecular Similarity, eds. M.A. Johnson and G.M. Maggiora (Wiley, New York, 1990) pp. 321–368.

    Google Scholar 

  83. J. Pipek and P.G. Mezey, A fast intrinsic localization procedure applicable for ab initio and semiempirical LCAO wavefunctions, J. Chem. Phys. 90 (1989) 4916–4926.

    Google Scholar 

  84. G.A. Arteca and P.G.Mezey, Two approaches to the concept of chemical species: Relations between potential energy and molecular shape, Internat. J. Quant. Chem., Sympos. 23 (1989) 305–320.

    Google Scholar 

  85. P.G. Mezey, Molecular surfaces, in: Reviews in Computational Chemistry, eds. K.B. Lipkowitz and D.B. Boyd (VCH, New York, 1990) chapter 7, pp. 265–294.

    Google Scholar 

  86. P.G. Mezey and J. Maruani, The concept of "syntopy": A continuous extension of the symmetry concept for quasi-symmetric structures using fuzzy-set theory, Mol. Phys. 69 (1990) 97–113.

    Google Scholar 

  87. G.A. Arteca, G.A. Heal and P.G. Mezey, Comparison of potential energy maps and molecular shape invariance maps for two-dimensional conformational problems, Theor. Chim. Acta 76 (1990) 377–390.

    Google Scholar 

  88. P.G. Mezey, Point symmetry groups of all distorted configurations of a molecule form a lattice, J. Math. Chem. 4 (1990) 377–381.

    Google Scholar 

  89. G.A. Arteca and P.G. Mezey, Analysis of molecular shape changes along reaction paths, Internat. J. Quantum Chem. 38 (1990) 713–726.

    Google Scholar 

  90. P.G. Mezey, Non-visual molecular shape analysis: Shape changes in electronic excitations and chemical reactions, in: Computational Advances in Organic Chemistry (Molecular Structure and Reactivity), eds. C. Ogretir and I.G. Csizmadia, Nato ASI Series (Kluwer Academic, Dordrecht, 1991) pp. 261–288.

    Google Scholar 

  91. P.G. Mezey, Molecular point symmetry and the phase of the electronic wavefunction; Tools for the prediction of critical points of potential energy surfaces, Internat. J. Quantum Chem. 38 (1990) 699–711.

    Google Scholar 

  92. G.M. Maggiora, P.G. Mezey, B. Mao and K.C. Chou, A new chiral feature in α-helical domains of proteins, Biopolymers 30 (1990) 211–215.

    Google Scholar 

  93. P.G. Mezey, A global approach to molecular symmetry: Theorems on symmetry relations between ground and excited state configurations, J. Amer. Chem. Soc. 112 (1990) 3791–3802.

    Google Scholar 

  94. P.G. Mezey, Fivefold symmetry in the context of potential surfaces, molecular conformations and chemical reactions, in: Quasicrystals, Networks, and Molecules with Fivefold Symmetry, ed. I. Hargittai (VCH, New York, 1990) pp. 223–238.

    Google Scholar 

  95. P.G. Mezey, Topological Quantum Chemistry, in: Reports in Molecular Theory, eds. H. Weinstein and G. Náray-Szabó, Vol. 1 (CRC Press, Boca Raton, 1990) pp. 165–183.

    Google Scholar 

  96. G.A. Arteca and P.G.Mezey, A method for the characterization of foldings in protein ribbon models, J. Mol. Graphics 8 (1990) 66–80.

    Google Scholar 

  97. A.A. Arteca and P.G. Mezey, A quantitative approach to structural similarity from molecular topology of reaction paths, Internat. J. Quantum Chem. Symp. 24 (1990) 1–13.

    Google Scholar 

  98. P.G. Mezey, The role of shape analysis in drug design, in: IEEE Engrg.in Med.& Bio.Soc.11th Annual Int.Conf. (1989) pp. 1905–1906.

  99. G.A. Arteca and P.G.Mezey, Quantitative measures of molecular similarity, in: IEEE Engrg.in Med.& Bio.Soc.11th Annual Int.Conf. (1989) pp. 1907–1908.

  100. P.G. Mezey, The degree of similarity of three-dimensional bodies; Applications to molecular shapes, J. Math. Chem. 7 (1991) 39–49.

    Google Scholar 

  101. P.D. Walker, G.A. Arteca and P.G. Mezey, A complete shape characterization for molecular charge densities represented by Gaussian-type functions, J. Comput. Chem. 12 (1991) 220–230.

    Google Scholar 

  102. F. Harary and P.G. Mezey, Chiral and achiral square-cell configurations and the degree of chirality, in: New Developments in Molecular Chirality, ed. P.G. Mezey (Kluwer Academic, Dordrecht, 1991) pp. 241–256.

    Google Scholar 

  103. P.G. Mezey, A global approach to molecular chirality, in: New Developments in Molecular Chirality, ed. P.G. Mezey (Kluwer Academic, Dordrecht, 1991) pp. 257–289.

    Google Scholar 

  104. J. Maruani and P.G. Mezey, From symmetry to syntopy: An extension of the symmetry concept to quasi-symmetric structures using fuzzy set theory, J. Chim. Phys. 87 (1990) 1025–1047.

    Google Scholar 

  105. G.A. Arteca and P.G. Mezey, Energy and shape analysis along reaction paths of chemical reactions. The case of hydrogen-deuterium exchange, J. Mol. Structure Theochem 230 (1991) 323–338.

    Google Scholar 

  106. G.A. Arteca and P.G. Mezey, Configurational dependence of molecular shape, J. Math. Chem 10 (1992) 329–371.

    Google Scholar 

  107. G.A. Arteca and P.G. Mezey, A topological analysis of macromolecular folding patterns, in: Theoretical and Computational Models for Organic Chemistry, eds. S.J. Formosinho, I.G. Csizmadia and L.G. Arnaut (Kluwer Academic, Dordrecht, 1991) pp. 111–124.

    Google Scholar 

  108. P.G. Mezey, New symmetry theorems and similarity rules for transition structures, in: Theoretical and Computational Models for Organic Chemistry, eds. S.J. Formosinho, I.G. Csizmadia and L.G. Arnaut (Kluwer Academic, Dordrecht, 1991) pp. 93–110.

    Google Scholar 

  109. G.A. Arteca and P.G. Mezey, Algebraic approaches to the shape analysis of biological macromolecules, in: Computational Chemistry, Structure, Interactions and Reactivity, Part A, ed. S. Fraga (Elsevier, Amsterdam, 1992) pp. 463–487.

    Google Scholar 

  110. G.A. Arteca, O. Tapia and P.G. Mezey, Implementing knot-theoretical characterization methods to analyze the backbone structure of proteins: Application to CTF-L7/L12 and carboxypeptidase A inhibitor proteins, J. Mol. Graphics 9 (1991) 148–156.

    Google Scholar 

  111. G.A. Arteca and P.G.Mezey, A measure of roughness of cross-sections of molecular surfaces, Theor. Chim. Acta 81 (1992) 79–93.

    Google Scholar 

  112. F. Harary and P.G. Mezey, Similarity and complexity of the shapes of square-cell configurations, Theor. Chim. Acta 79 (1991) 379–387.

    Google Scholar 

  113. P.G. Mezey, The alpha-Hull and the T-Hull of a point set: Tools for the analysis of shapes and relative orientations of objects in 3D-space, J. Math. Chem. 8 (1991) 91–102.

    Google Scholar 

  114. G.A. Arteca, A. Hernández-Laguna, J.J. Rández, Y.G. Smeyers and P.G. Mezey, A topological analysis of molecular electrostatic potential on van der Waals surfaces for histamine and 4-substituted derivatives as H2-receptor agonists, J. Comput. Chem. 12 (1991) 705–716.

    Google Scholar 

  115. X. Luo, G.A. Arteca and P.G. Mezey, Shape analysis along reaction paths of ring opening reactions, Internat. J. Quantum Chem. Sympos. 25 (1991) 335–345.

    Google Scholar 

  116. I. Rozas, G.A. Arteca and P.G. Mezey, On the inhibition of alcohol dehydrogenase: Shape group analysis of molecular electrostatic potential on van der Waals surfaces of some pyrazole derivatives, Internat. J. Quantum Chem. Quant. Biol. Sympos. 18 (1991) 269–288.

    Google Scholar 

  117. G.A. Arteca and P.G.Mezey, Similarities between the effects of configurational changes and applied electric fields on the shape of electron densities, J. Mol. Struct. Theochem 256 (1992) 125–134 (special volume on Electrostatics in Molecules, ed. G. Náray-Szabó and W.J. Orwille Thomas).

    Google Scholar 

  118. G.A. Arteca, N.D. Grant and P.G. Mezey, Variable atomic radii based on some approximate configurational invariance and transferability properties of the electron density, J. Comput. Chem. 12 (1991) 1198–1210.

    Google Scholar 

  119. P.G. Mezey, Similarity analysis in two and three dimensions using lattice animals and polycubes, J. Math. Chem. 11 (1992) 27–45.

    Google Scholar 

  120. P.G. Mezey, On the allowed symmetries of all distorted forms of conformers, molecules, and transition structures, Canad. J. Chem. 70 (1992) 343–347 (special issue dedicated to Prof. S. Huzinaga).

    Google Scholar 

  121. X. Luo, G.A. Arteca and P.G. Mezey, Shape similarity and shape stability along reaction paths. The case of the PPO-OPP isomerization, Internat. J. Quantum Chem. 42 (1992) 459–474.

    Google Scholar 

  122. P.G. Mezey, Topological shape analysis of chain molecules: An application of the GSTE principle, J. Math. Chem. 12 (1993) 365–373.

    Google Scholar 

  123. P.G. Mezey, Dynamic shape analysis of molecules in restricted domains of a configuration space, J. Math. Chem. 13 (1993) 59–70.

    Google Scholar 

  124. P.G. Mezey, Dynamic shape analysis of biomolecules using topological shape codes, in: The Role of Computational Models and Theories in Biotechnology, ed. J. Bertran (Kluwer Academic, Dordrecht, 1992) pp. 83–104.

    Google Scholar 

  125. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864-B865.

    Google Scholar 

  126. J. Riess and W. Münch, The theorem of Hohenberg and Kohn for subdomains of a quantum system, Theor. Chim. Acta 58 (1981) 295–300.

    Google Scholar 

  127. P.G. Mezey, Generalized chirality and symmetry deficiency, J. Math. Chem. 23 (1998) 65–84.

    Google Scholar 

  128. P.G. Mezey, The holographic electron density theorem and quantum similarity measures, Mol. Phys. 96 (1999) 169–178.

    Google Scholar 

  129. P.G. Mezey, Holographic electron density shape theorem and its role in drug design and toxicological risk assessment, J. Chem. Inf. Comput. Sci. 39 (1999) 224–230.

    PubMed  Google Scholar 

  130. P.G. Mezey, The holographic principle for latent molecular properties, J. Math. Chem., in press.

  131. P.G. Mezey, A uniqueness theorem on molecular recognition, J. Math. Chem., in press.

  132. P.G. Mezey, The holographic electron density theorem and some of its consequences, in: Computational Chemistry Approaches to Molecular Similarity, ed. R. Carbó-Dorca (Kluwer Academic/ Plenum, New York) in press (accepted May 29, 2000).

    Google Scholar 

  133. P.G. Mezey, Macromolecular density matrices and electron densities with adjustable nuclear geometries, J. Math. Chem. 18 (1995) 141–168.

    Google Scholar 

  134. P.G. Mezey, Quantum similarity measures and Löwdin's transform for approximate density matrices and macromolecular forces, Internat. J. Quantum Chem. 63 (1997) 39–48.

    Google Scholar 

  135. M. Berger, Geometry (Springer, Heidelberg, 1987).

    Google Scholar 

  136. J. Bourgain and V.D. Milman, New volume ratio properties of convex symmetric bodies in ℝn, Inventiones Math. 88 (1987) 319–341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Mezey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezey, P.G., Warburton, P., Jako, E. et al. Dimension Concepts and Reduced Dimensions in Toxicological QShAR Databases as Tools for Data Quality Assessment. Journal of Mathematical Chemistry 30, 375–387 (2001). https://doi.org/10.1023/A:1015138426162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015138426162

Navigation