Abstract
We present a new algorithm based on Wiener–Hermite functionals combined with Fourier collocation to solve the advection equation with stochastic transport velocity. We develop different stategies of representing the stochastic input, and demonstrate that this approach is orders of magnitude more efficient than Monte Carlo simulations for comparable accuracy.
This is a preview of subscription content,
to check access.Similar content being viewed by others
REFERENCES
Hills, R. G., and Trucano, T. G. (1999). Statistical validation of engineering and scientific models: Background. Technical Report SAND99–1256, Sandia National Laboratories.
Ghanem, R. G. (1999). Stochastic finite elements for heterogeneous media with multiple random non-Gaussian properties. ASCE J. Engrg. Mech. 125(1), 26–40.
Ghanem, R. G. (1999). Ingredients for a general purpose stochastic finite element formulation. Comput. Methods Appl. Mech. Engrg. 168, 19–34.
Fadale, T. D., and Emery, A. F. (1994). Transient effects of uncertainties on the sensitivities of temperatures and heat fluxes using stochastic finite elements. J. Heat Trans. 116, 808–814.
Ghanem, R. G., and Spanos, P. (1991). Stochastic Finite Elements: A Spectral Approach, Springer-Verlag.
Liu, W. K., Besterfield, G., and Mani, A. (1986). Probabilistic finite elements in nonlinear structural dynamics. Comput. Methods Appl. Mech. Engrg. 56, 61–81.
Liu, W. K., Mani, A., and Belytschko, T. (1987). Finite element methods in probabilistic mechanics. Probab. Engrg. Mech., 2(4):201–213, 1987.
Shinozuka, M., and Leone, E. (1976). A probabilistic model for spatial distribution of material properties. Engrg. Fract. Mech., 8, 217–227.
Shinozuka, M. (1987). Structural response variability. J. Engrg. Mech. 113(6), 825–842.
Ryzhik, L., Papanicolaou, G., and Keller, J. B. (1996). Transport equations for elastic and other waves in random media. Wave Motion 24, 327–370.
Wiener, N. (1938). The homogeneous chaos. Amer. J. Math. 60:897–936.
Wiener, N. (1958). Nonlinear Problems in Random Theory, MIT Technology Press and John Wiley and Sons, New York.
Chorin, A. J. (1971). Hermite expansion in Monte-Carlo simulations. J. Comput. Phys. 8, 472–482.
Orszag, S. A., and Bissonnette, L. R. (1967). Dynamical properties of truncated Wiener-Hermite expansions. Phys. Fluids 10, 2603.
Cameron, R. H., and Martin, W. T. (1947). The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Ann. of Math. 48, 385.
Loève, M. (1977). Probability Theory, Fourth Edition, Springer-Verlag.
Xiu, D., and Karniadakis, G. E. (2001). Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comp. Phys. To appear.
Spanos, P., and Ghanem, R. G. (1989). Stochastic finite element expansion for random media. ASCE J. Engrg. Mech. 115(5), 1035–1053.
Gottlieb, D., and Orszag, S. A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF, SIAM, Philadelphia, PA.
Boyd, J. P. (1980). The rate of convergence of Hermite function series. Math. Comp. 35, 1039–1316.
Tang, T. (1993). The Hermite spectral methods for Gaussian-type functions. SIAM J. Sci. Comput. 14, 594–606.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jardak, M., Su, CH. & Karniadakis, G.E. Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation. Journal of Scientific Computing 17, 319–338 (2002). https://doi.org/10.1023/A:1015125304044
Issue Date:
DOI: https://doi.org/10.1023/A:1015125304044