Skip to main content
Log in

A Least-Squares Spectral Element Formulation for the Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Least-squares spectral element methods seem very promising since they combine the generality of finite element methods with the accuracy of the spectral methods and also the theoretical and computational advantages in the algorithmic design and implementation of the least-squares methods. The new element in this work is the choice of spectral elements for the discretization of the least-squares formulation for its superior accuracy due to the high-order basis-functions. The main issue of this paper is the derivation of a least-squares spectral element formulation for the Stokes equations and the role of the boundary conditions on the coercivity relations. The numerical simulations confirm the usual exponential rate of convergence when p-refinement is applied which is typical for spectral element discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Agmon, S., Douglis, A., and Nirenberg, L. (1964). Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17, 35–92.

    Google Scholar 

  2. Aziz, A. K., Kellogg, R. B., and Stephens, A. B. (1985). Least-squares methods for elliptic systems. Math. Comput. 10, 53–70.

    Google Scholar 

  3. Bernardi, C., and Maday, Y. (1992). Approximations spectrale de problèmes aux limites élliptiques, Springer-Verlag.

  4. Bochev, P. B., and Gunzburger, M. D. (1994). Analysis of least squares finite element methods for the Stokes equations. Math. Comput., 63(208), 479–506.

    Google Scholar 

  5. Bochev, P. B., and Gunzburger, M. D. (1998). Finite element methods of least-squares type. SIAM Rev. 40(4), 789–837.

    Google Scholar 

  6. Carey, G. F., and Jiang, B.-N. (1986). Element-by-element linear and nonlinear solution schemes. Commun. Appl. Numer. Methods 2, 145–153.

    Google Scholar 

  7. Carey, G. F., and Jiang, B.-N. (1987). Least-squares finite element method and preconditioned conjugate gradient solution. Internat. J. Numer. Methods Engrg. 24, 1283–1296.

    Google Scholar 

  8. Carey, G. F., Shen, Y., and Mclay, R. T. (1998). Parallel conjugate gradient performance for least-squares finite elements and transport problems. Internat. J. Numer. Methods Fluids 28, 1421–1440.

    Google Scholar 

  9. Ciarlet, P. G. (1976). Finite Element Methods for Elliptic Problems, Vol. 4, North-Holland.

  10. Couzy, W. (1995). Spectral Element Discretization of the Unsteady Navier–Stokes Equations and its Iterative Solution on Parallel Computers, Ph.D. thesis, E´ cole Polytechnique Fédérale de Lausanne.

  11. Deang, J. M., and Gunzburger, M. D. (1998). Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput. 20, 878–906.

    Google Scholar 

  12. Gerritsma, M. I., and Phillips, T. N. (1998). Discontinuous spectral element approximations for the velocity-pressure-stress formulation of the Stokes problem. Internat. J. Numer. Methods Engrg. 43, 1401–1419.

    Google Scholar 

  13. Gerritsma M. I., and Proot, M. M. J. (2002). Analysis of a discontinuous least-squares spectral element method. J. Sci. Comp. 17, 297–306.

    Google Scholar 

  14. Jiang, B.-N. (1992). A least-squares finite element method for incompressible Navier–Stokes problems. Internat. J. Numer. Methods Fluids 14, 843–859.

    Google Scholar 

  15. Jiang, B.-N. (1998). The Least-Squares Finite Element Method, Springer-Verlag.

  16. Jiang, B.-N. (1998). On the least-squares method. Comput. Methods Appl. Mech. Engrg. 152, 239–257.

    Google Scholar 

  17. Jiang, B.-N. and Chang, C. L. (1990). Least-squares finite elements for the Stokes problem. Comput. Methods Appl. Mech. Engrg. 78, 297–311.

    Google Scholar 

  18. Jiang, B.-N., Lin, T. L., and Povinelli, L. A. (1994). Large-scale computation of incompressible viscous flow by least-squares finite element method. Comput. Methods Appl. Mech. Engrg. 114, 213–231.

    Google Scholar 

  19. Jiang, B.-N., and Povinelli, L. (1990). Least-squares finite element method for fluid dynamics. Comput. Methods Appl. Mech. Engrg. 81, 13–37.

    Google Scholar 

  20. Karniadakis G. E., and Sherwin, S. J. (1999). Spectral/hp Element Methods for CFD, Oxford University Press.

  21. Maday, Y., and Patera, A. T. (1989). Spectral element methods for the Navier–Stokes equations. In Noor, A. K., and Oden J. T. (eds), State-of-the-Art Surveys in Computational Mechanics, ASME.

  22. Proot, M. M. J., and Gerritsma, M. I. Least-squares spectral elements applied to the Stokes problem. Submitted.

  23. Quateroni, A., and Valli, A. (eds). (1997). Numerical Approximation of Partial Differential Equations, Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proot, M.M.J., Gerritsma, M.I. A Least-Squares Spectral Element Formulation for the Stokes Problem. Journal of Scientific Computing 17, 285–296 (2002). https://doi.org/10.1023/A:1015121219065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015121219065

Navigation