Skip to main content
Log in

Electrochemical and Spectroelectrochemical Behavior of the Main Photodegradation Product of Nifedipine: The Nitrosopyridine Derivative

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To characterize the electrochemical behavior of the photodegradation product of nifedipine, i.e., 2,6-dimethyl-4-(2-nitrosophenyl)-3,5-pyridine-carboxylic acid dimethyl ester (NPD) in different electrolytic media. We also evaluated the interaction between free radicals generated from NPD and xeno/endobiotics.

Methods. Tast polarography, differential pulse polarography, and cyclic voltammetry were used for the characterization. Controlled potential electrolysis and ultraviolet-visible spectroscopy were used to generate and to detect the nitroso radical anion.

Results. In protic media, the NPD derivative gave a reversible well-defined peak either on Hg or glassy carbon electrodes in a reaction involving two electrons and two protons to give the hydroxylamine derivative. In mixed aqueous-organic media (pH 9) and in aprotic media, nitroso radical anion was isolated and characterized, exhibiting second-order dimerization rate constant (k2) values of 11,300 ± 210 [Ms]−1 and 8,820 ± 78 [Ms]−1, respectively. Reactivity of the nitroso radical anion with relevant pharmacologic targets revealed a significant interaction with the tested endo/xenobiotics (cysteamine, GSH, N-acetylcysteine, and adenine).

Conclusions. Both in mixed and aprotic media, NPD generated free-radical species, the nitroso radical anion. Taking into account their respective interaction rate constants, the following tentative rank order of reactivity can be established as follows: cysteamine > N-acetylcysteine > GSH > adenine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. D. Henry. Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Am. J. Cardiol. 46:1047–1058 (1980).

    Google Scholar 

  2. P. Jakobsen, O. Lederballe Pedersen, and E. Mikkelsen. Gas chromatographic determination of nifedipine and one of its metabolites using electron capture detection. J. Chromatogr. 162:81–87 (1979).

    Google Scholar 

  3. B. K. Logan and K. S. Patrick. Photodegradation of nifedipine relative to nitrendipine evaluated by liquid and gas chromatography. J. Chromatogr. 529:175–181 (1990).

    Google Scholar 

  4. Y. Matsuda, R. Teraoka, and I. Sugimoto. Comparative evaluation of photostability of solid-state nifedipine under ordinary and intensive light irradiation conditions. Int. J. Pharmaceutics 54: 211–221 (1989).

    Google Scholar 

  5. M. Morad, Y. E. Goldman, and D. R. Trentham. Rapid photochemical inactivation of Ca2+-antagonists shows that Ca2+ entry directly activates contraction in frog heart. Nature 304:635–638 (1983).

    Google Scholar 

  6. R. Teraaka. Y. Matsuda and Sugimoto. Quantitative design for photostabilization of nifedipine by using titanium dioxide and/or tartrazine as colorants in model film coating systems. J. Pharm. Pharmacol 41:293–297 (1988).

    Google Scholar 

  7. N. K. Gibbs. N. J. Traynor, B. E. Johnson, and J. Ferguson. In vitro photostability of nifedipine: sequential induction of toxic and non-toxic photoproducts with UV-A radiation. J. Photochem. Photobiol. B. 13:275–288 (1992).

    Google Scholar 

  8. N. Hayase. Y-I. Itagaki., S. Ogawa., S. Akutsu, and S-I. Y. Abiko. Newly discovered photodegradation products of nifedipine in hospital prescriptions. J. Pharm. Sci. 83:532–538 (1994).

    Google Scholar 

  9. R. S. Nicholson. Semiempirical procedure for measuring with stationary electrode polarography rates of chemical reactions involving the product of electron transfer. Anal. Chem 38:1406 (1966).

    Google Scholar 

  10. G. Bontempelli, F. Magno, G. Mozzochin, and R. Seeger. Linear sweep and cyclic voltammetry. Annali di Chimica. 79:138–147 (1989).

    Google Scholar 

  11. M. L. Olmstead and R. G. Hamilton. and R.S. Nicholson Voltammetry Theory for the Disproportionation Reaction and Spherical Diffusion. Anal. Chem 41:260–266 (1969).

    Google Scholar 

  12. M. L. Olmstead, R. G. Hamilton, and R. S. Nicholson. Theory of cyclic voltammetry for a dimerization reaction initiated electrochemically. Anal. Chem. 41:260–266 (1969).

    Google Scholar 

  13. L. J. NÚñez-Vergara, F. García, M. M. Domínguez, J. De la Fuente, and J. A. Squella. In situ reactivity of the electrochemically generated nitro radical anion from nitrendipine with glutathione, adenine and uracil. J. Electroanal. Chem. 381:215–219 (1995).

    Google Scholar 

  14. L. J. NÚñez-Vergara. J. C. Sturm, A. Alvarez-Lueje, C. Olea-Azar, C. Sunkel, and J.A. Squella electrochemical oxidation of 4-methyl-1,4-dijydropyridines in protic and aprotic media. J. Electrochem. Soc. 146:1478–1485 (1999).

    Google Scholar 

  15. A. G. Gonzalez, F. Pablos, and A. Asuero. Corrections Factors for the glass electrode revisited. Talanta 39:91 (1992).

    Google Scholar 

  16. A. G. Asuero and M. A. Herrador, and A.G. González,, Estimation of pH and autoproteolysis constants in mixtures of aliphatic amides with water: medium effect on the 4-aminobenzene system. Talanta 40:479–484 (1993).

    Google Scholar 

  17. E. Laviron, A. Vallat, and R. Meunier-Prest, The reduction mechanism of aromatic nitro compounds in aqueous medium Part V. The reduction of nitrosobenzene between pH 0.4 and 13. J. Electroanal. Chem. 379:427–435 (1994).

    Google Scholar 

  18. J. H. Tocher. R. C. Knigth, and D. I. Edwards. Electrochemical characteristics of nitro-heterocyclic compounds of biologic interest. II. Nitrosochoramphenicol. Free Rad. Res. Commun. 5:319–326 (1989).

    Google Scholar 

  19. A. Streitwiesser and C. H. Heatcock. In: Química Orgánica, Interamericana, (1996).

  20. P. Zuman and S. Bhavdeep. Addition, reduction, and oxidation reactions of nitrosobenzene. Chem Rev. 94:1621–1641 (1994).

    Google Scholar 

  21. B. Kastering. P. L. Meites, I. M. Kolthoff. In Zuman (ed.), Progress in Polarography, vol 3, John Wiley & Sons, New York, 1972 pp. 259–266.

    Google Scholar 

  22. M. R. Asirvatham and D. Hawley. Electron-transfer processes: the electrochemical and chemical behavior of nitrosobenzene. J. Electroanal. Chem. 57:179–190 (1974).

    Google Scholar 

  23. L. J. NÚñez-Vergara, M. E. Ortiz, S. Bollo, and J. A. Squella. Electrochemical generation and reactivity of free radical redox intermediates from ortho-and meta-nitro substituted 1,4-dihydropyridines. Chem. Biol. Interact. 106:1–14 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Núñez-Vergara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez-Vergara, L.J., Bollo, S., Fuentealba, J. et al. Electrochemical and Spectroelectrochemical Behavior of the Main Photodegradation Product of Nifedipine: The Nitrosopyridine Derivative. Pharm Res 19, 522–529 (2002). https://doi.org/10.1023/A:1015112216360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015112216360

Navigation