Skip to main content
Log in

The Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Liquid n-Pentane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity and thermal diffusivity of liquid n-pentane have been measured over the temperature range from 293 to 428 K at pressures from 3.5 to 35 MPa using a transient hot-wire instrument. It was determined that the results were influenced by fluid thermal radiation, and a new expression for this effect is presented. The uncertainty of the experimental results is estimated to be better than ±0.5% for thermal conductivity and ±2% for thermal diffusivity. The results, corrected for fluid thermal radiation, are correlated as functions of temperature and density with a maximum uncertainty of ±2% for thermal conductivity and ±4% for thermal diffusivity. Derived values of the isobaric specific heat are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. B. Vargaftik, Handbook of PhysicalProperties of Liquid and Gases, 2nd ed. (Hemisphere, Washington, DC, New York and London, 1983), pp. 259–260.

  2. I. T. Carmichael, J. Jacobs, and B. H. Sage, J. Chem. Eng. Data 14:31 (1969).

    Google Scholar 

  3. A. M. F. Palavra, W. A. Wakeham,and M. Zalaf, Int. J. Thermophys. 8:305 (1987).

    Google Scholar 

  4. H. S. Carslaw and J. G. Jaeger, Conduction of Heat in Solids,2nd ed. (Clarendon Press, Oxford, 1959), pp. 339–341.

    Google Scholar 

  5. J. J. Healy, J. J. de Groot, and J. Kestin, Physica C 82:393 (1976).

    Google Scholar 

  6. C. A. Nieto de Castro, R. A. Perkins,and H. M. Roder, Int. J. Thermophys. 12:985 (1991).

    Google Scholar 

  7. C. A. Nieto de Castro, S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Int. J. Thermophys. 4:311 (1983).

    Google Scholar 

  8. R.A. Perkins, H. M. Roder, and C. A. Nieto de Castro, J. Res. Nad. Inst. Stand. Technol. 96:247 (1991).

    Google Scholar 

  9. J. Menashe and W.A. Wakeham, Int. J. Heat Mass Transfer 25:661 (1982).

    Google Scholar 

  10. H. M. Roder, R. A. Perkins, and C. A. Nieto de Castro, Int. J.Thermophys. 10:1141 (1989).

    Google Scholar 

  11. L. Sun, J. E. S. Venart, and R. C. Prasad, Int. J. Thermophys. 23:357 (2002).

    Google Scholar 

  12. L. Sun, Doctoral dissertation (University of NewBrunswick, Fredericton, 2001).

  13. E. F. Buyukicer, J. E. S. Venart,and R. C. Prasad, High Temp. High Press. 18:55 (1986).

    Google Scholar 

  14. R. Span, Multiparameter Equations of State—Accurate Source ofThermodynamic Property Data (Springer, Berlin/Heidelberg/New York, 2000).

    Google Scholar 

  15. E. W. Lemmon, A. P. Peskin, M. O. McLinden, and D. G. Friend, NIST Standard and Reference Database 12, Version 5.0 (2000).

  16. G. H. Wang, J. E. S. Venart, and R. C. Prasad, Proc. 11th Symp. Thermophys. Prop., Boulder, CO, June 23–27 (1991).

  17. J. Menashe and W. A. Wakeham, Ber.Bunsenges. Phys. Chem. 85:340 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Venart, J.E.S. & Prasad, R.C. The Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Liquid n-Pentane. International Journal of Thermophysics 23, 391–420 (2002). https://doi.org/10.1023/A:1015105402207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015105402207

Navigation