Advertisement

Euphytica

, Volume 123, Issue 3, pp 295–305 | Cite as

Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe

  • N. Amiour
  • A. Bouguennec
  • C. Marcoz
  • P. Sourdille
  • M. Bourgoin
  • D. Khelifi
  • G. Branlard
Article

Abstract

Analysis by SDS-PAGE of the majority of hexapoid triticales (× Triticosecale) (134 cultivars) grown in Europe allowed to identify 40 alleles at seven loci: Glu-A1, Glu-B1, Glu-R1, Gli-R2, Glu-B2, Glu-A3 and Glu-B3. Glu-B1 and Glu-B3 loci were the most polymorphic with 9 alleles at each locus. 95 allelic combinations were observed including 71 specific for one cultivar each. On the basis of allelic frequencies at the seven loci, genetic distances between hexapoid triticales grouped according to their origins revealed two clusters: winter triticales mostly originating from European germplasm and spring triticales essentially of CIMMYT origin. Comparison of allele frequencies between hexaploid triticale cultivars and a world collection of bread (Triticum aestivum) and durum (Triticum durum) wheat was investigated at Glu-A1 and Glu-B1: only a significant association was found for Glu-A1 alleles (γ2=2.26, p=0.36) between triticale and bread wheat.

polymorphism rye storage proteins triticale wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiour, N., M. Dardevet, D. Khelifi, A. Bouguennec & G. Branlard, 2001. Allelic variation of HMW and LMW glutenin subunits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale. Euphytica (in press).Google Scholar
  2. Autran, J.C. & A. Bourdet, 1975. L'identification des variétés de blé: établissement d'un tableau général de détermination fondé sur le diagramme électrophorétique des gliadines du grain. Ann Amelior Plantes 25(3): 277–301.Google Scholar
  3. Branlard, G. & M. Dardevet, 1985. Diversity of grain protein and bread wheat quality. 2. Correlation between molecular weight subunits of glutenin and flour quality characteristics. J Cereal Sci 3: 345–354.Google Scholar
  4. Branlard, G. & D.A. Le Blanc, 1985. Les sous-unités gluténines de haut poids moléculaire des blés tendres et des blés durs cultivés en France. Agronomie 5: 467–477.Google Scholar
  5. Branlard, G„ J.C. Autran & P. Monneveux, 1989. High molecular weight glutenin subunit in durum wheat (T. durum). Theor Appl Genet 78: 353–358.CrossRefGoogle Scholar
  6. Brzezinski, W. & A.J. Lukaszewski, 1998. Allelic variation at the Glu-1, Sec-2 and Sec-3 loci in winter Triticale. In: P. Juskiew (Ed.), Proc 4th Int Triticale Symp, Alberta, Vol. II, pp. 6–12.Google Scholar
  7. Gupta, R.B. & K.W. Shepherd, 1990. Two-steps one dimensional SDS-PAGE analysis of LMW subunits of glutelin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor Appl Genet 80: 65–74.Google Scholar
  8. Hohmann, U., 1988. Direct use of hexaploid wheat in production of hexaploid triticale. In: T.E. Miller & R.M.D. Koebner (Eds.), Proc 7th Int Wheat Genet Symp, Cambridge, England, pp. 303–308.Google Scholar
  9. Igrejas, G., H. Guedes-Pinto, V. Carnide & G. Branlard, 1999a. The high and low glutenin molecular subunits and ω-gliadin composition of bread and durum wheats commonly grown in Portugal. Plant Breed 118: 297–302.CrossRefGoogle Scholar
  10. Igrejas, G., H. Guedes-Pinto, V. Carnide & G. Branlard, 1999b. Seed storage protein diversity in triticale varieties commonly grown in Portugal. Plant Breed 118: 303–306.CrossRefGoogle Scholar
  11. Jackson, E.A., M.H. Morel, T. Sontag-Strohm, G. Branlard, E.V. Metakovsky & R. Redaelli, 1996. Proposal for combining classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.). J Genet and Breed 50: 321–336.Google Scholar
  12. Kazman, M.E. & T. Lelley, 1996. Can breadmaking quality be introduced into hexaploid triticale by whole-chromosome manipulation? In: H. Guedes-Pinto, N. Darvey & V.P. Carnide (Eds.), Triticale Today and Tomorrow, pp. 141–148. Kluwer Academic Publ, Netherlands.Google Scholar
  13. Lu, Y., M. Merlino, P.G. Isaac, P.G. Stacy, M. Bernard & P. Leroy, 1994. A comparative analyse between [32P] and digoxygenin-labelled single copy probes for RFLP detection in wheat. Agronomie 14: 33–39.Google Scholar
  14. Lukaszewski, A.J., B. Apolinarska & J.P. Gustafon, 1987. Introduction of D-genome chromosomes from bread wheat into hexaploid triticale with a complete rye genome. Genome 29: 425–430.Google Scholar
  15. MacRitchie, F., 1999. Wheat Proteins: Characterization and role in flour functionality. Cereal Food World 44: 188–193.Google Scholar
  16. Metakovsky, E.V. & G. Branlard, 1998. Genetic diversity of french common wheat germplasm based on gliadin alleles. Theor Appl Genet 96: 209–218.CrossRefGoogle Scholar
  17. Nieto-Taladriz, M.T., M. Ruiz, M.C. Martinez, J.F. Vàzkez, J.M. Carillo, 1997. Variation and classification of B low-molecularweight glutenin subunit alleles in durum wheat. Theor Appl Genet 95: 1155–1160.CrossRefGoogle Scholar
  18. Payne, P.I., K.G. Corfield & J.A. Blackman, 1981. Correlation between the inheritance of certain high molecular weight subunits of glutenin and breadmaking quality in progenies of six crosses of bread wheat. J Sci Food Agri 32: 51–60.Google Scholar
  19. Payne, P.I. & G.J. Lawrence, 1983. Catalogues of alleles of the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high molecular subunits of glutenin in hexaploïd wheat. Cereal Res Commun 11: 29–35.Google Scholar
  20. Payne, P.I., 1987. Genetic of wheat storage proteins and the effect of allelic variation on breadmaking quality. Ann Rev Plant Physiol 38: 147–153.Google Scholar
  21. Pogna, N., F. Milleni & A. Dal Berlin Purrufo, 1985. The role of PAGE in varietal identification and in developing new varieties of durum wheat with good spaghetti-making quality. In: Durum Wheat Symp, Foggia, Monograf Genet Agric 7, pp. 199–212.Google Scholar
  22. Rogers, J.S., 1972. Measures of genetic similarity and genetic distance. Studies Genet (Univ Texas Publ) 7213: 145–153.Google Scholar
  23. Royo, C., C. Soler & I. Romagosa, 1995. Agronomical and morphological differentiation among winter and spring triticales. Plant Breed 114: 413–416.CrossRefGoogle Scholar
  24. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  25. Rubio, P., N. Jouve, C. Soler & A. Bernardo, 1996. Isozymes and endosperm protein markers in the determination of chromosomal constitution in X Triticosecale Wittmack. In: H. Guedes-Pinto, N. Darvey & V.P. Carnide (Eds.), Triticale Today and Tomorrow, pp. 409–415. Kluwer Academic Publ, Netherlands.Google Scholar
  26. Sanchez-Monge, E.A., 1996. A retrospection on triticale. In: H. Guedes-Pinto, N. Darvey & V.P. Carnide (Eds.), Triticale Today and Tomorrow, pp. 73–81. Kluwer Academic Publ, Netherlands.Google Scholar
  27. Singh, N.K., K.W. Shepherd & G.B. Cornish, 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J Cereal Sci 14: 203–208.CrossRefGoogle Scholar
  28. Tixier, M.H., P. Sourdille, M. Roder, P. Leroy & M. Bernard, 1997. Detection of wheat microsattelites using a non radioactive silvernitrate staining method. J Genet Breed 57: 175–177.Google Scholar
  29. Tixier, M.H., P. Sourdille, G. Charmet, G. Gay, C. Jaby, T. Cadalen, S. Bernard, P. Nicolas & M. Bernard, 1998. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet 97: 1076–1082.CrossRefGoogle Scholar
  30. Vallega, V. & J.G. Waines, 1987. High-molecular-weight glutenin subunit variation in Triticum turgidum var. dicoccum. Theor Appl Genet 74: 706–710.CrossRefGoogle Scholar
  31. Varughese, G., 1991. Recognizing triticale's proper place among the world's cereals. In: Proc 2nd Int Triticale Symp, CIMMYT, Mexico, DF. pp. 6–8.Google Scholar
  32. Wright, S., 1978. Evolution and the Genetics Populations, vol. 4. Variability within and among Natural populations. University of Chicago Press, Chicago.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • N. Amiour
    • 1
    • 2
  • A. Bouguennec
    • 1
  • C. Marcoz
    • 1
  • P. Sourdille
    • 1
  • M. Bourgoin
    • 3
  • D. Khelifi
    • 2
  • G. Branlard
    • 1
  1. 1.INRA, U.M.RAmélioration et santé des plantesClermont FerrandFrance
  2. 2.Institut des Sciences de la NatureUniversité MentouriConstantineAlgeria
  3. 3.Groupement Experimentation Variétale et Etude des Semences (GEVES)France

Personalised recommendations