Skip to main content
Log in

Prediction of the Intestinal Absorption of Endothelin Receptor Antagonists Using Three Theoretical Methods of Increasing Complexity

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Three new computational strategies have been evaluated for their ability to predict intestinal membrane permeability to a series of endothelin receptor antagonists.

Methods. The three methods were evaluated using a set of ten non-peptide endothelin receptor antagonists. The simplest method, 'the rule of five', is based on 2D parameters such as the number of potential hydrogen bonds, molecular weight and calculated lipophilicity. A method based on molecular mechanics calculations is used to calculate 3D parameters such as polar and non-polar parts of the molecular surface area. The third method uses quantum mechanics to calculate molecular properties related to the valence region.

Results. Descriptors derived by the latter two methods correlated well with permeability coefficients of the endothelin receptor antagonists. On the other hand, the rule of five failed to discriminate between drugs with high and low permeability.

Conclusions. Molecular surface descriptors and descriptors derived from quantum mechanics are potentially useful for the virtual screening of the permeability of the intestinal membrane to endothelin receptor antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23:3–25 (1997).

    Google Scholar 

  2. B. Testa and J. Caldwell. Prodrugs revisited: The “Ad Hoc” approach as a complement to ligand design. Med. Res. Rev. 16:233–241 (1996).

    Google Scholar 

  3. P. Lundahl and F. Beigi. Immobilized liposome chromatography of drugs for model analysis of drug-membrane interactions. Adv. Drug Del. Rev. 23:221–227 (1997).

    Google Scholar 

  4. C. Y. Yang, S. J. Cai, H. Liu, and C. Pidgeon. Immobilized artificial membranes—screens for drug membrane interactions. Adv. Drug Del. Rev. 23:229–256 (1997).

    Google Scholar 

  5. P. Artursson and R. T. Borchardt. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm. Res. 14:1655–1658 (1997).

    Google Scholar 

  6. M. Kansy, F. Senner, and K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. 41:1007–1010 (1998).

    Google Scholar 

  7. P. Garberg, P. Eriksson, N. Schipper, and B. Sjöström. Automated absorption assessment using Caco-2 cells cultured on both sides of polycarbonate membranes. Pharm. Res. 16:441–445 (1999).

    Google Scholar 

  8. R. A. Morrison. Automation, reliability and limitations of Caco-2 intestinal permeability screening for selection of well-absorbed drug candidates, Early ADME and toxicology in drug discovery. IBC Conferences USA, Berkeley, CA, USA (1998).

  9. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Del. Rev. 22:67–84 (1996).

    Google Scholar 

  10. Y. C. Martin. A practioner's perspective of the role of quantitative structure-activity analysis in medicinal chemistry. J. Med. Chem. 24:229–237 (1981).

    Google Scholar 

  11. P. S. Burton, R. A. Conradi, A. R. Hilgers, N. N. F. Ho, and L. L. Maggiora. The relationship between peptide structure and transport across epithelial cell monolayers. J. Contr. Rel. 19:87–98 (1992).

    Google Scholar 

  12. K. Palm, K. Luthman, A.-L. Ungell, G. Strandlund, and P. Artursson. Correlation of drug absorption with molecular surface properties. J. Pharm. Sci. 85:32–39 (1996).

    Google Scholar 

  13. K. Palm, K. Luthman, A.-L. Ungell, G. Strandlund, F. Beigi, P. Lundahl, and P. Artursson. Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J. Med. Chem. 41:5382–5392 (1998).

    Google Scholar 

  14. K. Palm, P. Stenberg, K. Luthman, and P. Artursson. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res. 14:568–571 (1997).

    Google Scholar 

  15. P. Stenberg, K. Luthman, and P. Artursson. Prediction of membrane permeability to peptides from calculated dynamic molecular surface properties. Pharm. Res. 16:205–212 (1999).

    Google Scholar 

  16. J. T. Goodwin, P. S. Burton, A. R. Hilgers, R. A. Conradi, and N. N. F. Ho. Relationships between physicochemical properties for a series of peptides and membrane permeability in Caco-2 cells. Pharm. Res. 13:S243 (1996).

    Google Scholar 

  17. U. Norinder, T. Österberg, and P. Artursson. Theoretical calulation and prediction of Caco-2 cell permeability using MolSurf parametrization and PLS statistics. Pharm. Res. 14:1785–1790 (1997).

    Google Scholar 

  18. H. van de Waterbeemd, G. Camenisch, G. Folkers, and O. A. Raevsky. Estimation of Caco-2 cell permeability using calculated molecular descriptors. Quant. Struct.-Act. Relat. 15:480–490 (1996).

    Google Scholar 

  19. S. Winiwarter, N. M. Bonham, F. Ax, A. Hallberg, H. Lennernäs, and A. Karlen. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. 41:4939–4949 (1998).

    Google Scholar 

  20. E. H. Ohlstein, P. Nambi, A. Lago, D. W. Hay, G. Beck, K. L. Fong, E. P. Eddy, P. Smith, H. Ellens, and J. D. Elliott. Nonpeptide endothelin receptor antagonists. VI: Pharmacological characterization of SB 217242, a potent and highly bioavailable endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 276:609–615 (1996).

    Google Scholar 

  21. H. Ellens, E. P. Eddy, C.-P. Lee, P. Dougherty, A. Largo, J.-N. Xiang, J. D. Elliott, H.-Y. Cheng, E. Ohlstein, and P. L. Smith. In vitro permeability screening for identification of orally bioavailable endothelin receptor antagonists. Adv. Drug Del. Rev. 23:99–109 (1997).

    Google Scholar 

  22. G. Chang, W. C Guida, and W. C. Still. An internal coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 111:4379–4386 (1989).

    Google Scholar 

  23. F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, and W. C. Still. MacroModel—An integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J. Comp. Chem. 11:440–467 (1990).

    Google Scholar 

  24. MAREA v1.4, The program MAREA is available upon request from the authors. The program is provided free of charge for academic users. Contact Johan Gråsjö (email: johan.grasjo@galenik.uu.se).

  25. J. J. Gajewski, K. E. Gilbert, and J. McKelvey. MMX an enhanced version of MM2. Adv. Mol. Model. 2:65–92 (1990).

    Google Scholar 

  26. K. B. Lipkowitz, B. Baker, and R. Larter. Dynamic molecular surface areas. J. Am. Chem. Soc. 111:7750–7753 (1989).

    Google Scholar 

  27. Spartan v5.0, Wavefunction Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612 USA.

  28. MolSurf v3.11, Qemist AB, Hertig Carls allé 29, SE-691 41 Karlskoga, Sweden. http://members.xoom.com/Qemist.

  29. E. J. Jackson. A Users Guide to Principal Components, Wiley, New York, 1991.

    Google Scholar 

  30. A. Höskuldsson. PLS regression methods. J. Chemometrics 2:211–228 (1988).

    Google Scholar 

  31. Simca-S v6.01, Umetri AB, Box 7960, SE-907 19, Umeå, Sweden.

  32. A. L. Ungell, S. Nylander, S. Bergstrand, A. Sjöberg, and H. Lennernäs. Membrane transport of drugs in different regions of the intestinal tract of the rat. J. Pharm. Sci. 87:360–366 (1998).

    Google Scholar 

  33. U. Norinder, P. Sjöberg, and T. Österberg. Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. J. Pharm. Sci. 87:952–959 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenberg, P., Luthman, K., Ellens, H. et al. Prediction of the Intestinal Absorption of Endothelin Receptor Antagonists Using Three Theoretical Methods of Increasing Complexity. Pharm Res 16, 1520–1526 (1999). https://doi.org/10.1023/A:1015092201811

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015092201811

Navigation