Abstract
Callus was induced from hypocotyl and primary leaf explants of cumin (Cuminum cyminum L.) seedlings on a medium with 4 μM 2,4-D alone or plus 2 or 4 μM kinetin. An embryogenic callus developed within 2 weeks after transferring the callus to medium lacking plant growth regulators (PGR). The presence of kinetin in the callus induction medium with 2,4-D enhanced both the callus proliferation and the subsequent differentiation of the embryoids on the PGR-free medium. Plumules with or without simultaneously developed roots were observed 3–4 weeks after subculturing the embryogenic callus on medium containing 0.5 or 1.0 μM kinetin. Subsequently, they were transferred onto half-strength medium supplemented with 1 μM indole-3-butyric acid (IBA) and 2% polyethylene glycol (PEG, 6000) for root induction and/or proliferation, and in vitro hardening of the regenerated plants. The survival rate ex vitro was 70%. No plants developed from the embryogenic callus continuously incubated on medium lacking kinetin. We concluded that kinetin is crucial for plant regeneration from the induced embryoids of cumin.
This is a preview of subscription content, access via your institution.
References
Abu-Nahoul MA & Ismail TH (1995) The features of foreign trade for some aromatic and medicinal plants in Egypt. Assiut J. Agric. Sci. 26: 319–335
Aruna K & Sivaramakrishnan VM (1996) Anticarcinogenic effects of the essential oils from cumin, poppy and basil. Phytother. Res. 10: 577–580
Chaudhury A & Qu R (2000) Somatic embryogenesis and plant regeneration of turf-type bermudagrass: Effect of 6-benzyladenine in callus induction medium. Plant Cell Tiss. Org. Cult. 60: 113–120
Dave A & Batra A (1995) Somatic tissues leading to embryogenesis in cumin. Curr. Sci. 68: 754–755
Gamborg OL, Miller RA & Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Expt. Cell Res. 50: 151–158
Gomez KA & Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. John Wily, NY
Heath-Pagliuso S & Rappaport L (1990) Somaclonal variant UC-T3: the expression of Fusarium wilt resistance in progeny arrays of celery, Apium graveolens L. Theor. Appl. Genet. 80: 390–394
Hoppe B (1996) Status of German medicinal and spice plant production. Gemüse-Munchen 32: 283–284
Hunault G (1984) In vitro culture of fennel tissues (Foeniculum vulgare Miller) from cell suspension to mature plant. Scientia Hort. 22: 55–65
Hunault G, Desmarest P & Manoir JD (1989) Foeniculum vulgare Miller: cell culture, regeneration and the production of anethole In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry 7: Medicinal and Aromatic Plants II (pp 185–212). Springer-Verlag, Berlin, Germany
Hussein MA & Batra A (1998) In vitro embryogensis of cumin hypocotyl segments. Adv. Plant Sci. 11: 125–127
Kumar SA, Gamborg OL & Nabors MW (1988)Plant regeneration from long-term cell suspension cultures of tepary bean (Phaseolus acutifolius). Plant Cell Rep. 7: 322–325
Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497
Saranga Y & Janick J (1991) Celery somatic embryo production and regeneration: Improved protocols. HortScience 26: 1335
Shetty RS, Singhal RS & Kulkarni PR (1994) Antimicrobial properties of cumin. World J. Micro. Biotech. 10: 232–233
Shukla MR, Subhash N, Patel DR & Patel SA (1997) In vitro se-lection for resistance to Alternaria blight in cumin (Cuminum cyminum L.). In: Edison S, Ramana KV, Sasikumar B, Babu KN & Eapen SJ (eds) Proceedings of the National Seminar on Bio-technology of Spices and Aromatic Plants, Calicut, India 24–25 April, 1996 (pp 126–128). Indian Soc. for Spices
Skirvin RM, Mcpheeters KD & Norten M (1994) Source and frequency of somaclonal variation. HortScience 29: 1232–1237.
Steward FC, Mapes MO & Mear SK (1958). Growth and organized development of cultured cells. Amer. J. Bot. 45: 705–708
Tawfik AA & Noga G (2001) Adventitious shoot proliferation from hypocotyl and internodal stem explants of cumin (Cuminum cyminum L.). Plant Cell Tiss. Org. Cult. 66: 141–147
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tawfik, A.A., Noga, G. Cumin regeneration from seedling derived embryogenic callus in response to amended kinetin. Plant Cell, Tissue and Organ Culture 69, 35–40 (2002). https://doi.org/10.1023/A:1015078409682
Issue Date:
DOI: https://doi.org/10.1023/A:1015078409682