Skip to main content
Log in

Kinetics of Limited Dissolution of Liquids in Polymers: Theoretical Aspects of the Problem

  • Published:
Fibre Chemistry Aims and scope

Abstract

The characteristics of limited dissolution of liquids in polymers in the highly elastic state are formulated. A rigorous expression was obtained for the rate of the change in the average degree of swelling of the elastomer in the form of an unlimited plate of arbitrary thickness with a linear law of distribution of the driving force of the process in it, equal to the difference in the chemical potentials of the diffusant in and outside of the polymer matrix. Calculation of the diffusion coefficient of a low-molecular-weight liquid in a polymer based on data on the swelling kinetics is only possible when very thin samples are used, where the gradient of the driving force of the process over the thickness of the material approaches zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Privalko, Molecular Structure and Properties of Polymers [in Russian], Khimiya, Leningrad (1986), p. 29.

    Google Scholar 

  2. L. N. Mizerovskii and G. A. Krestov, Dokl. Akad. Nauk, 335,No. 2, 185–186 (1994).

    Google Scholar 

  3. L. N. Mizerovskii, Khim. Volokna, No. 6, 7–11 (1995).

    Google Scholar 

  4. M. F. Bukhina, Technical Physics of Elastomers [in Russian], Khimiya, Moscow (1984).

    Google Scholar 

  5. A. V. Bromberg and O. S. Mal'tseva, Zh. Prikl. Khim., 20,No. 5, 422–430 (1947).

    Google Scholar 

  6. Aa. V. Dumanskii, A. F. Mezhennyi, and E. F. Nekriyach, Kolloidn. Zh., 10,No. 8, 193–198 (1948).

    Google Scholar 

  7. S. M. Lipatov, Physical Chemistry of Colloids [in Russian], Goskhimizdat, Moscow (1948), pp. 280–281.

    Google Scholar 

  8. A. L. Rotinyan, Kolloidn. Zh., 11,No.6, 431–437 (1949).

    Google Scholar 

  9. A. V. Bromberg and S. A. Merekalov, Zh. Prikl. Khim., 23,No. 12, 1280–1289 (1950).

    Google Scholar 

  10. A. V. Lykov, Thermal Conductivity of Nonsteady Processes [in Russian], Gosenergoizdat,, Moscow (1948).

    Google Scholar 

  11. S. N. Zhurkov and G. Ya. Ryskin, Zh. Tekh. Fiz., 24,No. 5, 797–810 (1954).

    Google Scholar 

  12. L. Rebenfeld, P. J. Makarewicz, and H. D. Weigmann, J. Macromol. Sci., 15,No. 2, 279–393 (1976).

    Google Scholar 

  13. S. A. Reitlinger, Permeability of Polymer Materials [in Russian], Khimiya, Moscow (1974).

    Google Scholar 

  14. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1975).

    Google Scholar 

  15. N. I. Nikolaev, Diffusion in Membranes [in Russian], Khimiya, Moscow (1980).

    Google Scholar 

  16. A. E. Chalykh, Diffusion in Polymer Systems [in Russian], Khimiya, Moscow (1987).

    Google Scholar 

  17. V. E. Gul', Kolloidn. Zh., 15,No. 3, 170–177 (1953).

    Google Scholar 

  18. M. I. Mazel' and I. N. Ermolaenko, Uch. Zap. Beloruss. Gos. Un-t im. Lenina, Ser. Khim., 14, 47–63 (1953).

    Google Scholar 

  19. E. Ya. Denisyuk and V. V. Tereshatov, Vysokomolek. Soedin. 42,No. 42, 71–83 (2000).

    Google Scholar 

  20. M. L. Smolyanskii, Tables of Indefinite Integrals [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  21. L. Treloar, Physics of Rubber Elasticity, Oxford (1949).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizerovskii, L.N., Pochivalov, K.V. Kinetics of Limited Dissolution of Liquids in Polymers: Theoretical Aspects of the Problem. Fibre Chemistry 33, 487–494 (2001). https://doi.org/10.1023/A:1015071704029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015071704029

Keywords

Navigation