Altenberg L (1994) The evolution of evolvability in genetic programming. In: Kinnear K (ed) Advances in Genetic Programming, pp. 47-74. MIT Press, Cambridge, MA
Google Scholar
Arnold BC, Balakrishnan N and Nagaraja HN (1992) A First Course in Order Statistics.Wiley, New York
Google Scholar
Arnold DV and Beyer H-G (2000a) Local performance of the (1 + 1)-ES in a noisy environment. IEEE Transactions on Evolutionary Computation. accepted for publication
Arnold DV and Beyer H-G (2000b) Performance analysis of evolution strategies with multirecombination in high-dimensional ℝN-search spaces disturbed by noise. Theoretical Computer Science. In print
Arnold DV and Beyer H-G (2001) Local performance of the (µ/µ
I
, ?)-ES in a noisy environment. In: Martin W and Spears W (eds) Foundations of Genetic Algorithms, 6, pp. 127-141. Morgan Kaufmann, San Francisco, CA
Google Scholar
Bäck T (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, NY
Google Scholar
Bäck T, Fogel D and Michalewicz Z (eds) (1997) Handbook of evolutionary computation. IOP Publishing and Oxford University Press, New York
Google Scholar
Beyer H-G (1990) Simulation of steady states in dissipative systems by darwin's paradigm of evolution. J. Non-Equilib. Thermodyn. 15: 45-58
Google Scholar
Beyer H-G (1992) Some aspects of the 'evolution strategy' for solving tsp-like optimization problems. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 361-370. Elsevier, Amsterdam
Google Scholar
Beyer H-G (1995) Toward a theory of evolution strategies: on the benefit of sex-the (µ/µ, ?)-theory. Evolutionary Computation 3(1): 81-111
Google Scholar
Beyer H-G (1996) Toward a theory of evolution strategies: Self-adaptation. Evolutionary Computation 3(3): 311-347
Google Scholar
Beyer H-G (1997) An alternative explanation for the manner in which genetic algorithms operate. BioSystems 41: 1-15
Google Scholar
Beyer H-G (2000) Evolutionary algorithms in noisy environments: Theoretical issues and guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-4): 239-267
Google Scholar
Beyer H-G (2001a) On the performance of (1, ?)-evolution strategies for the ridge function class. IEEE Transactions on Evolutionary Computation 5(3): 218-235
Google Scholar
Beyer H-G (2001b) The Theory of Evolution Strategies. Natural Computing Series. Springer, Heidelberg
Google Scholar
Beyer H-G and Deb K (2001) On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation 5(3): 250-270
Google Scholar
Born J (1978) Evolutionsstrategien zur numerischen Lösung von Adaptationsaufgaben. Dissertation A. Humboldt-Universität, Berlin
Google Scholar
De Jong K, David D, Fogel B and Schwefel H-P (1997) A history of evolutionary computation. In: Bäck T, Fogel DB and Michalewicz Z (eds) Handbook of Evolutionary Computation, pp. A2.3:1-12. Oxford University Press, New York, and Institute of Physics Publishing, Bristol
Google Scholar
Droste S, Jansen T and Wegener I (1998a) On the optimization of unimodal functions with the (1 + 1) evolutionary algorithm. In: Eiben A, Bäck T, Schoenauer M and Schwefel H-P (eds) Parallel Problem Solving from Nature, 5, pp. 13-22. Springer-Verlag, Heidelberg
Google Scholar
Droste S, Jansen T and Wegener I (1998b) A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs. Evolutionary Computation 6(2): 185-196
Google Scholar
Droste S and Wiesmann D (2000) Metric based evolutionary algorithms. In: Poli R, Banzhaf W, Langdon W, Miller J, Nordin P and Fogarty T (eds) Proc. of the Third European Conference on Genetic Programming, EuroGP 2000, pp. 29-43. Springer, Berlin
Google Scholar
Eiben AE, Hinterding R and Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2): 124-141
Google Scholar
Fisz M (1971) Wahrscheinlichkeitsrechnung und mathematische Statistik. VEB Deutscher Verlag der Wissenschaften, Berlin
Google Scholar
Fogel D (ed) (1998) Evolutionary Computation: The Fossil Record. IEEE Press, Piscataway, NJ
Google Scholar
Fogel DB, Schwefel H-P, Bäck T and Yao X (eds) (1998) Proc. Second IEEE World Congress on Computational Intelligence (WCCI'98) with Fifth IEEE Conf. Evolutionary Computation (IEEE/ICEC'98) Anchorage AK, May 4-9, 1998 IEEE Press, Piscataway, NJ
Google Scholar
Fogel LJ (1962) Autonomous automata. Industrial Research 4: 14-19
Google Scholar
Fogel LJ, Owens AJ and Walsh MJ (1966) Artificial Intelligence through Simulated Evolution. Wiley, New York
Google Scholar
Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading, MA
Google Scholar
Grünz L and Beyer H-G (1999) Some observations on the interaction of recombination and self-adaptation in evolution strategies. In: Angeline P (ed) Proceedings of the CEC'99 Conference, pp. 639-645. IEEE, Piscataway, NJ
Google Scholar
Hansen N and Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: Proceedings of 1996 IEEE Int'l Conf. on Evolutionary Computation (ICEC '96), pp. 312-317. NY, IEEE Press
Google Scholar
Hansen N and Ostermeier A (1997) Convergence properties of evolution strategies with the derandomized covariance matrix adaptation: The (µ/µ
I
, ?)-CMA-ES. In: Zimmermann HJ (ed) 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT'97), pp. 650-654. Aachen, Germany, Verlag Mainz
Google Scholar
Hansen N and A Ostermeier (2001) Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2): 159-195
Google Scholar
Hartmann D (1974) Optimierung balkenartiger Zylinderschalen aus Stahlbeton mit elastischem und plastischem Werkstoffverhalten. Dr.-Ing. Dissertation, University of Dortmund, Dortmund
Google Scholar
Herdy M (1990) Application of the 'evolutionsstrategie' to discrete optimization problems. In: Schwefel H-P and Männer R (eds) Parallel Problem Solving from Nature, 1, pp. 188-192. Springer-Verlag, Berlin.
Google Scholar
Herdy M (1992) Reproductive isolation as strategy parameter in hierarchically organized evolution strategies. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 207-217. Elsevier, Amsterdam.
Google Scholar
Holland JH (1962) Outline for a logical theory of adaptive systems. JACM 9: 297-314
Google Scholar
Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor
Google Scholar
Holland JH (1995) Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading, MA
Google Scholar
Horn J, Goldberg D and Deb K (1994) Long path problems. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 149-158. Springer-Verlag, Heidelberg
Google Scholar
Jansen T (2000) Theoretische analyse evolutionärer Algorithmen unter dem Aspekt der Optimierung in diskreten Suchräumen. Phd thesis, Univ. of Dortmund, Dortmund, Germany (in German).
Google Scholar
Jansen T and Wegener I (1999) On the analysis of evolutionary algorithms-a proof that crossover really can help. In: Nesetril J (ed) Proceedings of the 7th Annual European Symposium on Algorithms (ESA '99), pp. 184-193. Berlin, Germany, LNCS 1643, Springer
Google Scholar
Jansen T and Wegener I (2000) On the choice of the mutation probability for the (1 + 1) EA. In: M Schoenauer (ed) Parallel Problem Solving from Nature, 6, pp. 89-98. Springer, Heidelberg
Google Scholar
Jansen T and Wegener I (2001) Real royal road functions-where crossover provably is essential. In: Spector L (ed) GECCO'01: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, San Francisco, CA
Google Scholar
Jaynes ET (1979) Where do we stand on maximum entropy? In: Levine R and Tribus M (eds) The Maximum Entropy Formalism, pp. 15-118
Kappler C, Bäck T, Heistermann J, Van de Velde A and Zamparelli M (1996) Refueling of a nuclear power plant: comparison of a naive and a specialized mutation operator. In: Voigt H-M, Ebeling W, Rechenberg I and Schwefel H-P (eds) Parallel Problem Solving from Nature-PPSN IV, Int'l Conf. Evolutionary Computation, pp. 829-838. Springer, Berlin
Google Scholar
Klockgether J and Schwefel H-P (1970) Two-phase nozzle and hollow core jet experiments. In: Elliott DG (ed) Proc. 11th Symp. Engineering Aspects of Magnetohydrodynamics, pp. 141-148. California Institute of Technology, Pasadena CA
Google Scholar
Kursawe F (1992) Evolution strategies for vector optimization. In: Tzeng G-H and Yu P-L (eds) Preliminary Proc. Tenth Int'l Conf.Multiple Criteria Decision Making, pp. 187-193. National Chiao Tung University, Taipei
Google Scholar
Kursawe F (1999) Grundlegende empirische Untersuchungen der Parameter von Evolutionsstrategien-Metastrategien. Dr. rer. nat.-Dissertation, University of Dortmund, Department of Computer Science, Chair of Systems Analysis. Schwefel.
Google Scholar
Laumanns M, Rudolph G and Schwefel H-P (1998) A spatial predator-prey approach to multi-objective optimization. In: Eiben AE, Bäck T, Schoenauer M and Schwefel H-P (eds) Parallel Problem Solving from Nature-PPSN V, Fifth Int'l Conf., Amsterdam, The Netherlands, September 27-30, 1998, Proc., pp. 241-249. Springer, Berlin
Google Scholar
Laumanns M, Rudolph G and Schwefel H-P (2001) Mutation control and convergence in evolutionary multi-objective optimization. In: Matousek R and Osmera P (eds) Proc. Seventh Int'l Conf. Soft Computing (MENDEL'01), pp. 24-29. Brno University of Technology, Brno, Czech Republic
Google Scholar
Lin S and Kernighan BW (1973) An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21: 498-516
Google Scholar
Lohmann R (1992) Structure evolution and incomplete induction. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 175-185. Elsevier, Amsterdam
Google Scholar
Michalewicz Z, Schaffer JD, Schwefel H-P, Fogel DB and Kitano H (eds) (1994) Proc. First IEEE Conf. Evolutionary Computation, Vol. I (oral presentations) and II (posters) of IEEE World Congress on Computational Intelligence. Orlando FL. The Institute of Electrical and Electronics Engineers, IEEE-Press, Piscataway NJ
Google Scholar
Mitchell M, Holland J and Forrest S (1994) When will a genetic algorithm outperform hill climbing. In: Cowan J, Tesauro G and Alspector J (eds) Advances in Neural Information Processing Systems, pp. 51-58. Morgan Kaufmann, San Mateo, CA
Google Scholar
Motwani R and Raghavan P (1995) Randomized Algorithms. Cambridge University Press, New York, NY
Google Scholar
Mühlenbein H and Mahnig T (1999) FDA a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation 7(4): 353-376
Google Scholar
Nürnberg H-T and Beyer H-G (1997) The dynamics of evolution strategies in the optimization of traveling salesman problems. In: Angeline P, Reynolds R, McDonnell J and Eberhart R (eds) Evolutionary Programming VI: Proceedings of the Sixth Annual Conference on Evolutionary Programming, pp. 349-359. Springer-Verlag, Heidelberg
Google Scholar
Ostermeier A, Gawelczyk A and Hansen N (1994) Step-size adaptation based on non-local use of selection information. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 189-198. Springer-Verlag, Heidelberg
Google Scholar
Oyman AI (1999) Convergence behavior of evolution strategies on ridge functions. Ph.D. Thesis, University of Dortmund, Department of Computer Science
Oyman AI and Beyer H-G (2000) Analysis of the (µ/µ, ?)-ES on the parabolic ridge. Evolutionary Computation 8(3): 267-289
Google Scholar
Oyman AI, Beyer H-G and Schwefel H-P (2000) Analysis of a simple ES on the “parabolic ridge”. Evolutionary Computation 8(3): 249-265
Google Scholar
Pelikan M, Goldberg D and Cantu-Paz E (1999) BOA: the bayesian optimization algorithm. In: Banzhaf W, Daida J, Eiben A, Garzon M, Honavar V, Jakiela M and Smith R (eds) GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 525-532. Morgan Kaufmann, San Francisco, CA
Google Scholar
Rappl G (1989), On linear convergence of a class of random search algorithms. Zeitschrift f. angew. Math. Mech. (ZAMM) 69(1): 37-45
Google Scholar
Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Farnborough p. Library Translation 1122
Google Scholar
Rechenberg I (1971) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Dr.-Ing. Thesis, Technical University of Berlin, Department of Process Engineering
Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart
Google Scholar
Rechenberg I (1978) Evolutionsstrategien. In: Schneider B and Ranft U (eds) Simulationsmethoden in der Medizin und Biologie, pp. 83-114. Springer-Verlag, Berlin
Google Scholar
Rechenberg I (1994) Evolutionsstrategie '94. Frommann-Holzboog Verlag, Stuttgart
Google Scholar
Rudolph G (1992) On correlated mutations in evolution strategies. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature-Proc. Second Conf. PPSN, pp. 105-114. Free University of Brussels, Elsevier, Amsterdam
Google Scholar
Rudolph G (1994) An evolutionary algorithm for integer programming. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 139-148. Springer-Verlag, Heidelberg
Google Scholar
Rudolph G (1997a) Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kova?, Hamburg. PhD-Thesis
Google Scholar
Rudolph G (1997b) How mutation and selection solve long-path problems in polynomial expected time. Evolutionary Computation 4(2): 195-205
Google Scholar
Rudolph G and Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Zalzala A and Eberhart R (eds) Proc. 2000 Congress on Evolutionary Computation (CEC'00), Vol. 2. La Jolla CA, pp. 1010-1016. IEEE Press, Piscataway NJ
Google Scholar
Schwefel H-P (1965) Kybernetische Evolution als Strategie der exprimentellen Forschung in der Strömungstechnik. Master's thesis, Technical University of Berlin
Schwefel H-P (1968) Experimentelle Optimierung einer Zweiphasendüse Teil I. Technical Report No. 35 of the Project MHD-Staustrahlrohr 11.034/68, AEG Research Institute, Berlin
Google Scholar
Schwefel H-P (1975) Evolutionsstrategie und numerische Optimierung. Dissertation, TU Berlin, Germany
Schwefel H-P (1977) Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Interdisciplinary systems research; 26. Birkhäuser, Basel
Google Scholar
Schwefel H-P (1981) Numerical Optimization of Computer Models. Wiley, Chichester
Google Scholar
Schwefel H-P (1987) Collective phenomena in evolutionary systems. In: Checkland P and Kiss I (eds) Problems of Constancy and Change-the Complementarity of Systems Approaches to Complexity, Papers presented at the 31st Annual Meeting of the Int'l Soc. for General System Research, Vol. 2. Budapest, pp. 1025-1033. Int'l Soc. for General System Research
Google Scholar
Schwefel H-P (1995) Evolution and Optimum Seeking. Wiley, New York, NY
Google Scholar
Schwefel H-P and Kursawe F (1998) On natural life's tricks to survive and evolve. In: Fogel DB, Schwefel H-P, Bäck T and Yao X (eds) Proc. Second IEEE World Congress on Computational Intelligence (WCCI'98) with Fifth IEEE Conf. Evolutionary Computation (IEEE/ICEC'98), pp. 1-8. Anchorage AK, IEEE Press, Piscataway NJ
Google Scholar
Schwefel H-P and Rudolph G (1995) Contemporary evolution strategies. In: Morana F, Moreno A, Merelo JJ and Chacon P (eds) Advances in Artificial Life. Third ECAL Proceedings, pp. 893-907. Springer-Verlag, Berlin
Google Scholar
Sendhoff B, Kreuz M and von Seelen W (1997) A condition for the genotype-phenotype mapping: Causality. In: Bäck T (ed) Proc. 7th Int'l Conf. on Genetic Algorithms, pp. 73-80. Morgan Kaufmann Publishers, Inc., Francisco, CA
Google Scholar
Syswerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer JD (ed) Proc. 3rd Int'l Conf. on Genetic Algorithms, pp. 2-9. Morgan Kaufmann, San Mateo, CA.
Google Scholar
Wegener I (2000) On the design and analysis of evolutionary algorithms. In: Workshop on Algorithm Engineering as a New Paradigm. Kyoto, pp. 36-47. Research Institute for Mathematical Science, Kyoto Univ.
Wegener I (2001) Theoretical aspects of evolutionary algorithms. In: Spirakis P (ed), Proc. 28th International Colloquium on Automata, Languages and Programming. Springer-Verlag, Berlin
Google Scholar
Wegener I and Witt C (2001) On the analysis of a simple evolutionary algorithm on quadratic pseudo-Boolean functions. Submitted to Journal of Discrete Algorithms
Yao X (1999) Evolving artificial neural networks. Proceedings of the IEEE 87(9): 1423-1447
Google Scholar