Evolution strategies – A comprehensive introduction

Abstract

This article gives a comprehensive introduction into one of the main branches of evolutionary computation – the evolution strategies (ES) the history of which dates back to the 1960s in Germany. Starting from a survey of history the philosophical background is explained in order to make understandable why ES are realized in the way they are. Basic ES algorithms and design principles for variation and selection operators as well as theoretical issues are presented, and future branches of ES research are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Altenberg L (1994) The evolution of evolvability in genetic programming. In: Kinnear K (ed) Advances in Genetic Programming, pp. 47-74. MIT Press, Cambridge, MA

    Google Scholar 

  2. Arnold BC, Balakrishnan N and Nagaraja HN (1992) A First Course in Order Statistics.Wiley, New York

    Google Scholar 

  3. Arnold DV and Beyer H-G (2000a) Local performance of the (1 + 1)-ES in a noisy environment. IEEE Transactions on Evolutionary Computation. accepted for publication

  4. Arnold DV and Beyer H-G (2000b) Performance analysis of evolution strategies with multirecombination in high-dimensional ℝN-search spaces disturbed by noise. Theoretical Computer Science. In print

  5. Arnold DV and Beyer H-G (2001) Local performance of the (µ/µ I , ?)-ES in a noisy environment. In: Martin W and Spears W (eds) Foundations of Genetic Algorithms, 6, pp. 127-141. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  6. Bäck T (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, NY

    Google Scholar 

  7. Bäck T, Fogel D and Michalewicz Z (eds) (1997) Handbook of evolutionary computation. IOP Publishing and Oxford University Press, New York

    Google Scholar 

  8. Beyer H-G (1990) Simulation of steady states in dissipative systems by darwin's paradigm of evolution. J. Non-Equilib. Thermodyn. 15: 45-58

    Google Scholar 

  9. Beyer H-G (1992) Some aspects of the 'evolution strategy' for solving tsp-like optimization problems. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 361-370. Elsevier, Amsterdam

    Google Scholar 

  10. Beyer H-G (1995) Toward a theory of evolution strategies: on the benefit of sex-the (µ/µ, ?)-theory. Evolutionary Computation 3(1): 81-111

    Google Scholar 

  11. Beyer H-G (1996) Toward a theory of evolution strategies: Self-adaptation. Evolutionary Computation 3(3): 311-347

    Google Scholar 

  12. Beyer H-G (1997) An alternative explanation for the manner in which genetic algorithms operate. BioSystems 41: 1-15

    Google Scholar 

  13. Beyer H-G (2000) Evolutionary algorithms in noisy environments: Theoretical issues and guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-4): 239-267

    Google Scholar 

  14. Beyer H-G (2001a) On the performance of (1, ?)-evolution strategies for the ridge function class. IEEE Transactions on Evolutionary Computation 5(3): 218-235

    Google Scholar 

  15. Beyer H-G (2001b) The Theory of Evolution Strategies. Natural Computing Series. Springer, Heidelberg

    Google Scholar 

  16. Beyer H-G and Deb K (2001) On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation 5(3): 250-270

    Google Scholar 

  17. Born J (1978) Evolutionsstrategien zur numerischen Lösung von Adaptationsaufgaben. Dissertation A. Humboldt-Universität, Berlin

    Google Scholar 

  18. De Jong K, David D, Fogel B and Schwefel H-P (1997) A history of evolutionary computation. In: Bäck T, Fogel DB and Michalewicz Z (eds) Handbook of Evolutionary Computation, pp. A2.3:1-12. Oxford University Press, New York, and Institute of Physics Publishing, Bristol

    Google Scholar 

  19. Droste S, Jansen T and Wegener I (1998a) On the optimization of unimodal functions with the (1 + 1) evolutionary algorithm. In: Eiben A, Bäck T, Schoenauer M and Schwefel H-P (eds) Parallel Problem Solving from Nature, 5, pp. 13-22. Springer-Verlag, Heidelberg

    Google Scholar 

  20. Droste S, Jansen T and Wegener I (1998b) A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs. Evolutionary Computation 6(2): 185-196

    Google Scholar 

  21. Droste S and Wiesmann D (2000) Metric based evolutionary algorithms. In: Poli R, Banzhaf W, Langdon W, Miller J, Nordin P and Fogarty T (eds) Proc. of the Third European Conference on Genetic Programming, EuroGP 2000, pp. 29-43. Springer, Berlin

    Google Scholar 

  22. Eiben AE, Hinterding R and Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2): 124-141

    Google Scholar 

  23. Fisz M (1971) Wahrscheinlichkeitsrechnung und mathematische Statistik. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  24. Fogel D (ed) (1998) Evolutionary Computation: The Fossil Record. IEEE Press, Piscataway, NJ

    Google Scholar 

  25. Fogel DB, Schwefel H-P, Bäck T and Yao X (eds) (1998) Proc. Second IEEE World Congress on Computational Intelligence (WCCI'98) with Fifth IEEE Conf. Evolutionary Computation (IEEE/ICEC'98) Anchorage AK, May 4-9, 1998 IEEE Press, Piscataway, NJ

    Google Scholar 

  26. Fogel LJ (1962) Autonomous automata. Industrial Research 4: 14-19

    Google Scholar 

  27. Fogel LJ, Owens AJ and Walsh MJ (1966) Artificial Intelligence through Simulated Evolution. Wiley, New York

    Google Scholar 

  28. Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading, MA

    Google Scholar 

  29. Grünz L and Beyer H-G (1999) Some observations on the interaction of recombination and self-adaptation in evolution strategies. In: Angeline P (ed) Proceedings of the CEC'99 Conference, pp. 639-645. IEEE, Piscataway, NJ

    Google Scholar 

  30. Hansen N and Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: Proceedings of 1996 IEEE Int'l Conf. on Evolutionary Computation (ICEC '96), pp. 312-317. NY, IEEE Press

    Google Scholar 

  31. Hansen N and Ostermeier A (1997) Convergence properties of evolution strategies with the derandomized covariance matrix adaptation: The (µ/µ I , ?)-CMA-ES. In: Zimmermann HJ (ed) 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT'97), pp. 650-654. Aachen, Germany, Verlag Mainz

    Google Scholar 

  32. Hansen N and A Ostermeier (2001) Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2): 159-195

    Google Scholar 

  33. Hartmann D (1974) Optimierung balkenartiger Zylinderschalen aus Stahlbeton mit elastischem und plastischem Werkstoffverhalten. Dr.-Ing. Dissertation, University of Dortmund, Dortmund

    Google Scholar 

  34. Herdy M (1990) Application of the 'evolutionsstrategie' to discrete optimization problems. In: Schwefel H-P and Männer R (eds) Parallel Problem Solving from Nature, 1, pp. 188-192. Springer-Verlag, Berlin.

    Google Scholar 

  35. Herdy M (1992) Reproductive isolation as strategy parameter in hierarchically organized evolution strategies. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 207-217. Elsevier, Amsterdam.

    Google Scholar 

  36. Holland JH (1962) Outline for a logical theory of adaptive systems. JACM 9: 297-314

    Google Scholar 

  37. Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  38. Holland JH (1995) Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading, MA

    Google Scholar 

  39. Horn J, Goldberg D and Deb K (1994) Long path problems. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 149-158. Springer-Verlag, Heidelberg

    Google Scholar 

  40. Jansen T (2000) Theoretische analyse evolutionärer Algorithmen unter dem Aspekt der Optimierung in diskreten Suchräumen. Phd thesis, Univ. of Dortmund, Dortmund, Germany (in German).

    Google Scholar 

  41. Jansen T and Wegener I (1999) On the analysis of evolutionary algorithms-a proof that crossover really can help. In: Nesetril J (ed) Proceedings of the 7th Annual European Symposium on Algorithms (ESA '99), pp. 184-193. Berlin, Germany, LNCS 1643, Springer

    Google Scholar 

  42. Jansen T and Wegener I (2000) On the choice of the mutation probability for the (1 + 1) EA. In: M Schoenauer (ed) Parallel Problem Solving from Nature, 6, pp. 89-98. Springer, Heidelberg

    Google Scholar 

  43. Jansen T and Wegener I (2001) Real royal road functions-where crossover provably is essential. In: Spector L (ed) GECCO'01: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  44. Jaynes ET (1979) Where do we stand on maximum entropy? In: Levine R and Tribus M (eds) The Maximum Entropy Formalism, pp. 15-118

  45. Kappler C, Bäck T, Heistermann J, Van de Velde A and Zamparelli M (1996) Refueling of a nuclear power plant: comparison of a naive and a specialized mutation operator. In: Voigt H-M, Ebeling W, Rechenberg I and Schwefel H-P (eds) Parallel Problem Solving from Nature-PPSN IV, Int'l Conf. Evolutionary Computation, pp. 829-838. Springer, Berlin

    Google Scholar 

  46. Klockgether J and Schwefel H-P (1970) Two-phase nozzle and hollow core jet experiments. In: Elliott DG (ed) Proc. 11th Symp. Engineering Aspects of Magnetohydrodynamics, pp. 141-148. California Institute of Technology, Pasadena CA

    Google Scholar 

  47. Kursawe F (1992) Evolution strategies for vector optimization. In: Tzeng G-H and Yu P-L (eds) Preliminary Proc. Tenth Int'l Conf.Multiple Criteria Decision Making, pp. 187-193. National Chiao Tung University, Taipei

    Google Scholar 

  48. Kursawe F (1999) Grundlegende empirische Untersuchungen der Parameter von Evolutionsstrategien-Metastrategien. Dr. rer. nat.-Dissertation, University of Dortmund, Department of Computer Science, Chair of Systems Analysis. Schwefel.

    Google Scholar 

  49. Laumanns M, Rudolph G and Schwefel H-P (1998) A spatial predator-prey approach to multi-objective optimization. In: Eiben AE, Bäck T, Schoenauer M and Schwefel H-P (eds) Parallel Problem Solving from Nature-PPSN V, Fifth Int'l Conf., Amsterdam, The Netherlands, September 27-30, 1998, Proc., pp. 241-249. Springer, Berlin

    Google Scholar 

  50. Laumanns M, Rudolph G and Schwefel H-P (2001) Mutation control and convergence in evolutionary multi-objective optimization. In: Matousek R and Osmera P (eds) Proc. Seventh Int'l Conf. Soft Computing (MENDEL'01), pp. 24-29. Brno University of Technology, Brno, Czech Republic

    Google Scholar 

  51. Lin S and Kernighan BW (1973) An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21: 498-516

    Google Scholar 

  52. Lohmann R (1992) Structure evolution and incomplete induction. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 175-185. Elsevier, Amsterdam

    Google Scholar 

  53. Michalewicz Z, Schaffer JD, Schwefel H-P, Fogel DB and Kitano H (eds) (1994) Proc. First IEEE Conf. Evolutionary Computation, Vol. I (oral presentations) and II (posters) of IEEE World Congress on Computational Intelligence. Orlando FL. The Institute of Electrical and Electronics Engineers, IEEE-Press, Piscataway NJ

    Google Scholar 

  54. Mitchell M, Holland J and Forrest S (1994) When will a genetic algorithm outperform hill climbing. In: Cowan J, Tesauro G and Alspector J (eds) Advances in Neural Information Processing Systems, pp. 51-58. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  55. Motwani R and Raghavan P (1995) Randomized Algorithms. Cambridge University Press, New York, NY

    Google Scholar 

  56. Mühlenbein H and Mahnig T (1999) FDA a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation 7(4): 353-376

    Google Scholar 

  57. Nürnberg H-T and Beyer H-G (1997) The dynamics of evolution strategies in the optimization of traveling salesman problems. In: Angeline P, Reynolds R, McDonnell J and Eberhart R (eds) Evolutionary Programming VI: Proceedings of the Sixth Annual Conference on Evolutionary Programming, pp. 349-359. Springer-Verlag, Heidelberg

    Google Scholar 

  58. Ostermeier A, Gawelczyk A and Hansen N (1994) Step-size adaptation based on non-local use of selection information. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 189-198. Springer-Verlag, Heidelberg

    Google Scholar 

  59. Oyman AI (1999) Convergence behavior of evolution strategies on ridge functions. Ph.D. Thesis, University of Dortmund, Department of Computer Science

  60. Oyman AI and Beyer H-G (2000) Analysis of the (µ/µ, ?)-ES on the parabolic ridge. Evolutionary Computation 8(3): 267-289

    Google Scholar 

  61. Oyman AI, Beyer H-G and Schwefel H-P (2000) Analysis of a simple ES on the “parabolic ridge”. Evolutionary Computation 8(3): 249-265

    Google Scholar 

  62. Pelikan M, Goldberg D and Cantu-Paz E (1999) BOA: the bayesian optimization algorithm. In: Banzhaf W, Daida J, Eiben A, Garzon M, Honavar V, Jakiela M and Smith R (eds) GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 525-532. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  63. Rappl G (1989), On linear convergence of a class of random search algorithms. Zeitschrift f. angew. Math. Mech. (ZAMM) 69(1): 37-45

    Google Scholar 

  64. Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Farnborough p. Library Translation 1122

    Google Scholar 

  65. Rechenberg I (1971) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Dr.-Ing. Thesis, Technical University of Berlin, Department of Process Engineering

  66. Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart

    Google Scholar 

  67. Rechenberg I (1978) Evolutionsstrategien. In: Schneider B and Ranft U (eds) Simulationsmethoden in der Medizin und Biologie, pp. 83-114. Springer-Verlag, Berlin

    Google Scholar 

  68. Rechenberg I (1994) Evolutionsstrategie '94. Frommann-Holzboog Verlag, Stuttgart

    Google Scholar 

  69. Rudolph G (1992) On correlated mutations in evolution strategies. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature-Proc. Second Conf. PPSN, pp. 105-114. Free University of Brussels, Elsevier, Amsterdam

    Google Scholar 

  70. Rudolph G (1994) An evolutionary algorithm for integer programming. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 139-148. Springer-Verlag, Heidelberg

    Google Scholar 

  71. Rudolph G (1997a) Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kova?, Hamburg. PhD-Thesis

    Google Scholar 

  72. Rudolph G (1997b) How mutation and selection solve long-path problems in polynomial expected time. Evolutionary Computation 4(2): 195-205

    Google Scholar 

  73. Rudolph G and Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Zalzala A and Eberhart R (eds) Proc. 2000 Congress on Evolutionary Computation (CEC'00), Vol. 2. La Jolla CA, pp. 1010-1016. IEEE Press, Piscataway NJ

    Google Scholar 

  74. Schwefel H-P (1965) Kybernetische Evolution als Strategie der exprimentellen Forschung in der Strömungstechnik. Master's thesis, Technical University of Berlin

  75. Schwefel H-P (1968) Experimentelle Optimierung einer Zweiphasendüse Teil I. Technical Report No. 35 of the Project MHD-Staustrahlrohr 11.034/68, AEG Research Institute, Berlin

    Google Scholar 

  76. Schwefel H-P (1975) Evolutionsstrategie und numerische Optimierung. Dissertation, TU Berlin, Germany

  77. Schwefel H-P (1977) Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Interdisciplinary systems research; 26. Birkhäuser, Basel

    Google Scholar 

  78. Schwefel H-P (1981) Numerical Optimization of Computer Models. Wiley, Chichester

    Google Scholar 

  79. Schwefel H-P (1987) Collective phenomena in evolutionary systems. In: Checkland P and Kiss I (eds) Problems of Constancy and Change-the Complementarity of Systems Approaches to Complexity, Papers presented at the 31st Annual Meeting of the Int'l Soc. for General System Research, Vol. 2. Budapest, pp. 1025-1033. Int'l Soc. for General System Research

    Google Scholar 

  80. Schwefel H-P (1995) Evolution and Optimum Seeking. Wiley, New York, NY

    Google Scholar 

  81. Schwefel H-P and Kursawe F (1998) On natural life's tricks to survive and evolve. In: Fogel DB, Schwefel H-P, Bäck T and Yao X (eds) Proc. Second IEEE World Congress on Computational Intelligence (WCCI'98) with Fifth IEEE Conf. Evolutionary Computation (IEEE/ICEC'98), pp. 1-8. Anchorage AK, IEEE Press, Piscataway NJ

    Google Scholar 

  82. Schwefel H-P and Rudolph G (1995) Contemporary evolution strategies. In: Morana F, Moreno A, Merelo JJ and Chacon P (eds) Advances in Artificial Life. Third ECAL Proceedings, pp. 893-907. Springer-Verlag, Berlin

    Google Scholar 

  83. Sendhoff B, Kreuz M and von Seelen W (1997) A condition for the genotype-phenotype mapping: Causality. In: Bäck T (ed) Proc. 7th Int'l Conf. on Genetic Algorithms, pp. 73-80. Morgan Kaufmann Publishers, Inc., Francisco, CA

    Google Scholar 

  84. Syswerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer JD (ed) Proc. 3rd Int'l Conf. on Genetic Algorithms, pp. 2-9. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  85. Wegener I (2000) On the design and analysis of evolutionary algorithms. In: Workshop on Algorithm Engineering as a New Paradigm. Kyoto, pp. 36-47. Research Institute for Mathematical Science, Kyoto Univ.

  86. Wegener I (2001) Theoretical aspects of evolutionary algorithms. In: Spirakis P (ed), Proc. 28th International Colloquium on Automata, Languages and Programming. Springer-Verlag, Berlin

    Google Scholar 

  87. Wegener I and Witt C (2001) On the analysis of a simple evolutionary algorithm on quadratic pseudo-Boolean functions. Submitted to Journal of Discrete Algorithms

  88. Yao X (1999) Evolving artificial neural networks. Proceedings of the IEEE 87(9): 1423-1447

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beyer, HG., Schwefel, HP. Evolution strategies – A comprehensive introduction. Natural Computing 1, 3–52 (2002). https://doi.org/10.1023/A:1015059928466

Download citation

  • computational intelligence
  • Darwinian evolution
  • design principles for genetic operators
  • evolutionary computation
  • evolution strategies
  • optimization