Skip to main content
Log in

Evaluation of cytoplasmic effects on agronomic and seed quality traits in two doubled haploid populations of Brassica napus L.

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cytoplasmic effects have been occasionally implicated in the inheritance of several traits in oilseed rape (Brassica napus L.), including linolenic acid concentration (18:3) in the oil. It is important that these be considered when choosing the direction of cross for producing new breeding populations. To study this phenomenon, a reciprocal cross was made between two genotypes of oilseed rape, Reston and LL09, which differed for their erucic and linolenic acid concentrations in the seed oil. Two DH populations, which were produced by microspore culture from reciprocal F1 plants, were evaluated in the growth room for one generation and in the field at two locations in Southern Ontario in 1993and 1994. Field notes were taken on days to flower, days to maturity,plant lodging, plant height and, seed quality traits. In the growth room study, the phenotypic distribution of 18:3 differed significantly between the two reciprocal DH populations. In the field, significant reciprocal differences between the population means were detected for 18:3,flowering date and protein content in both years and for days to maturity and oil content in 1993 only. To further study the parental lines,chloroplast (cp) and mitochondrial (mt) DNA from parental lines were isolated and subjected to RFLP and RAPD analysis. Several random primers revealed reproducible DNA polymorphism (RAPD) between the parental mt DNA. It is concluded that the direction of cross should be taken into consideration by oilseed rape breeders relying solely on doubled haploids for developing genotypes with modified seed quality traits in Brassica napus L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bannon, C.D., G.J. Breen, J.D. Craske, N.T. Hai & K.L. O'Rourke, 1982. Analysis of fatty acid methyl esters with accuracy and reliability. J Chromatography 247: 71–89.

    Article  CAS  Google Scholar 

  • Bartkowiak-Broda, I. & J. Krzymanski,1983. Inheritance of C18 fatty acid composition in seed oil of zero erucic winter rape Brassica napus L. Proc Inter Rapeseed Conf, Paris, Vol. 1, pp. 477–482.

    Google Scholar 

  • Beversdorf, W.D., D.J. Hume & M.J. Donnelly-Vanderloo, 1988. Agronomic performance of triazine-resistant and susceptible reciprocal spring canola hybrids. Crop Sci 28: 932–934.

    Article  Google Scholar 

  • Brim, C.A., W.M. Schutz & F.I. Collins, 1968. Maternal effect on fatty acid composition and oil content of soybeans, Glycine max L. Merr. Crop Sci 8: 517–518.

    Article  CAS  Google Scholar 

  • Chen, J.L., 1988. The inheritance and variation of fatty acids in spring rapeseed (Brassica napus L.) using in vitro techniques and single seed descent. MSc Thesis, Department of Crop Science, University of Guelph, Guelph, Ontario, Canada.

    Google Scholar 

  • Chen, J.L. & W.D. Beversdorf, 1990. Fatty acid inheritance in microspore-derived populations of spring rapeseed (Brassica napus L.). Theor Appl Genet 80: 465–469.

    CAS  Google Scholar 

  • Davik, J. & W. Heneen, 1996. Fatty acid inheritance in wide reciprocal oilseed crosses(Brassica rapa and B. napus). Acta Agric Scand Sect B Soil and Plant Sci 46: 234–239.

    CAS  Google Scholar 

  • Diepenbrock, W. & R.F. Wilson, 1987. Genetic regulation of linolenic acid concentration in rapeseed. Crop Sci 27: 75–77.

    Article  CAS  Google Scholar 

  • Ekiz, H., A.S. Kiral, A Akçin & L. Simsek, 1998. Cytoplasmic effects on quality traits of bread wheat (Triticum aestivum L.). Euphytica 100: 189–196.

    Article  Google Scholar 

  • Ekiz, H. & C.F. Konzak, 1991. Nuclear and cytoplasmic control of anther culture response in wheat: III. Common wheat crosses. Crop Sci 31: 1432–1436.

    Article  Google Scholar 

  • Edwards, K., C. Johnstone & C. Thompson, 1991. A simple and rapid method for the preparation of the plant genomic DNA for PCR analysis. Nucl Acids Res 19: 1349.

    PubMed  CAS  Google Scholar 

  • Gomez, K.A. & A.A. Gomez, 1984. Statistical Procedures for Agricultural Research. 2nd edition. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Jakkula, L.R., D.A. Knauft & D.W. Gorbet, 1997. Inheritance of a shriveled seed trait in peanut. J Heredity 88(1): 47–51.

    Google Scholar 

  • Kemble, R.J., 1987. A rapid, single leaf, nucleic acid assay for determining the cytoplasmic organelle complement of rapeseed and related Brassica species. Theor Appl Genet 73: 364–370.

    Article  CAS  Google Scholar 

  • Lonsdale, D.M. & J.M. Grienenberger, 1992. The mitochondrial genome of plants. In: R.G. Herrmann (Ed.), Plant Gene Research. Cell Organelles. Chapter 6. Springer Verlag, Wien, New York.

    Google Scholar 

  • Lorenz, M., A. Weihe & T. Börner, 1997. Cloning and sequencing of RAPD fragments amplified from mitochondrial DNA of malesterile and male-fertile cytoplasm of sugar beet (Beta vulgaris L.). Theor Appl Genet 94: 273–278.

    Article  CAS  Google Scholar 

  • Makaroff, C.A. & J.D. Palmer, J.D. 1988. Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile Ogura radish. Mol Cell Biol 8: 1474–1480.

    PubMed  CAS  Google Scholar 

  • Mikami, T., M. Sigiura & T. Kinoshita, 1984. Molecular heterogeneity in mitochondrial and chloroplast DNAs from normal and male sterile cytoplasm in sugar beets. Curr Genet 8: 319–322.

    Article  CAS  Google Scholar 

  • Miller, R.L., R.M. Shibbles, E.G. Hammond & D.E. Green, 1996. Effect of unique cytoplasm in reciprocal crosses of soybeans. Crop Sci 36: 1196–1206.

    Article  CAS  Google Scholar 

  • Oettler, G. & D.J. Mares, 1994. Falling number and alpha-amylase activity in developing grain of alloplasmic hexaploid wheat. Plant Breed 112: 47–52.

    Article  CAS  Google Scholar 

  • Palmer J.D. & L.A. Hebron, 1987. Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11: 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Pleines, S. & W. Friedt, 1989. Genetic control of linolenic acid concentration in seed oil of rapeseed (Brassica napus L.). Theor Appl Genet 78: 793–797.

    Article  CAS  Google Scholar 

  • Polsoni, L., L.S. Kott & W.D. Beversdorf, 1988. Large scale microspore culture technique for mutation, selection studies in Brassica napus L. Can J Bot 66: 1681–1685.

    Google Scholar 

  • Powell, W., W.T.B. Thomas, D.M. Thompson, J.S. Swanston & R. Waugh, 1992. Association between rDNA alleles and quantitative traits in doubled haploid populations of barley. Genetics 130: 187–194.

    PubMed  CAS  Google Scholar 

  • Rajcan, I., 1996. Molecular and Breeding Studies of Doubled Haploids Segregating for Linolenic Acid Levels in Brassica napus L. Ph.D. Thesis, Department of Crop Science, University of Guelph, Guelph, Ontario, Canada.

    Google Scholar 

  • Rajcan I., K.J. Kasha, L.S. Kott & W.D. Beversdorf, 1999. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica 105: 173–181.

    Article  CAS  Google Scholar 

  • Rajcan, I., Kott, L.S., Beversdorf, W.D. and Kasha, K.J. 1997. Performance of doubled haploid populations segregation for linolenic acid levels in spring rapeseed. Crop Sci 37: 1438–1442.

    Article  Google Scholar 

  • Ramsey, L.D., J.E. Bradshaw & M.J. Kearsey, 1994. The inheritance of quantitative traits in Brassica napus ssp. rapifera (swedes): augmented triple test cross analysis of yield. Heredity 73: 84–91.

    Google Scholar 

  • Rawat, D.S., 1992. Analysis of reciprocal differences in Indian mustard. Acta Agron. Hungarica 41 (3-4): 227–233.

    Google Scholar 

  • Sane, A.P., P. Seth, S.A. Ranade, P. Nath & P.V. Sane, 1997. RAPD analysis of isolated mitochondrial DNA reveals heterogeneity in elite wild abortive (W) cytoplasm in rice. Theor Appl Genet 95: 1098–1103.

    Article  CAS  Google Scholar 

  • Seka, D. & H.Z. Cross, 1995. Xenia and maternal effects on maize kernel development. Crop Sci 35: 80–85.

    Article  Google Scholar 

  • Siegel, S., 1956. Non-Parametric Statistics for the Behavioural Sciences, pp. 121–124. McGraw-Hill Book Company. New York, Toronto, London.

    Google Scholar 

  • Singh, B.B. & H.H. Hadley, 1968. Maternal control of oil synthesis in soybean, Glycine max L. Merr. Crop Sci 8: 622–625.

    Article  Google Scholar 

  • Thomas, P.M. & Z.P. Kondra, 1973. Maternal effects on the oleic, linoleic and linolenic acid content of rapeseed oil. Can J Pl Sci 53: 221–225.

    Article  CAS  Google Scholar 

  • Van Deynze, A.E., B.S. Landry & K.P. Pauls, 1995. The identification of restriction length polymorphisms lined to seed colour genes in Brassica napus. Genome 38: 534–542.

    CAS  Google Scholar 

  • Vedel, F., P. Chetrit, C. Mathieu, G. Pelletier & C. Primard, 1986. Several different mitochondrial DNA regions are involved in intergeneric recombinations in Brassica napus cybrid plants. Curr Genet 11: 17–24.

    Article  CAS  Google Scholar 

  • Wang, M. & I.L. Goldman, 1997. Transgressive segregation and reciprocal effect for free folic acid content in a red sugar beet (Beta vulgaris L.) population. Euphytica 96: 317–321.

    Article  CAS  Google Scholar 

  • Weber, S., W. Luchs & W. Friedt, 1995. Application of microspore culture in Brassica napus crosses involving resynthesized rapeseed. Cruciferae Newsletter 17: 40–41

    Google Scholar 

  • Welsh, J. & M. McClelland, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213–7218.

    PubMed  CAS  Google Scholar 

  • Wilcox, J.R., 1985. Breeding soybeans for improved oil quality and Quantity, pp. 380–386. In: R. Shibles (Ed.), Proc World Soybean Res Conf, 3rd, Ames, IA, 12 Aug. 1984. Westview Press. Boulder, CO.

    Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphism amplified by arbitrary primers are useful genetic markers. Nucleic Acids Res 18: 6531–6535.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajcan, I., Kasha, K., Kott, L. et al. Evaluation of cytoplasmic effects on agronomic and seed quality traits in two doubled haploid populations of Brassica napus L.. Euphytica 123, 401–409 (2002). https://doi.org/10.1023/A:1015057923578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015057923578

Navigation