Skip to main content
Log in

Periodic Orbits Around Geostationary Positions

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We generate families of planar periodic orbits emanating from the geostationary points, both stable and unstable. We show that, even for the unstable points, it is possible to have stable periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V. I.: 1961, 'The stability of the equilibrium position of a Hamiltonian system of ordinary differential equations in the general elliptic case', Soviet Math. Dokl. 2, 247–249.

    Google Scholar 

  • Blitzer, L., Boughton, E. M., Kang, G. and Page, R. M.: 1962, 'Effect of the ellipticity of the equator on 24-hour nearly circular satellite orbits', J. Geoph. Res. 67, 329–335.

    Google Scholar 

  • Blitzer, L.: 1965, 'Equilibrium position and stability of 24-hour satellite orbits', J. Geoph. Res. 70, 3987–3992.

    Google Scholar 

  • Deprit, A. and Henrard, J.: 1967, 'Natural families of periodic orbits', Astron. J. 72, 158–172.

    Google Scholar 

  • Deprit, A. and López, T. J.: 1996, 'Estabilidad orbital de sat´elites estacionarios', Rev. Matem. Univ. Complutense Madrid 9, 311–333.

    Google Scholar 

  • Gedeon, G. S.: 1969, 'Tesseral resonance effects on satellite orbits', Celest. Mech. 1, 167–189.

    Google Scholar 

  • Hénon, M.: 1965, 'Exploration num´erique du probl`eme restreint. II Masses ´egales, stabilit´e des orbites périodiques', Ann. Astrophys. 28, 992–1007.

    Google Scholar 

  • Howard, J.: 1990, 'Spectral stability of relative equilibria', Celest. Mech. & Dyn. Astr. 48, 267–288.

    Google Scholar 

  • Kamel, A., Ekman, D. and Tibbitts, R.: 1973, 'East-west stationkeeping requirements of nearly synchronous satellites due to Earth's triaxiality and luni-solar effects', Celest. Mech. 8, 129–148.

    Google Scholar 

  • Lara, M., Deprit, A. and Elipe, A.: 1995, 'Numerical continuation of frozen orbits for the zonal problem', Celest. Mech. & Dyn. Astr. 62, 167–181.

    Google Scholar 

  • Lara, M.: 1996, 'On numerical continuation of families of periodic orbits in a parametric potential', Mech. Res. Comm. 23, 291–298.

    Google Scholar 

  • Milani, A., Nobili, A. M. and Farinella, P.: 1987, Non-Gravitational Perturbations and Satellite Geodesy, Adam Hilger.

  • Morando, B.: 1963, 'Orbites de résonance des satellites de 24 heures', Bull. Astronom. 24, 47–67.

    Google Scholar 

  • Musen, P. and Bailie, A. E.: 1962, 'On the motion of a 24-hour satellite', J. Geoph. Res. 67, 1123–1132.

    Google Scholar 

  • Oberti, P.: 1994, 'The main problem of geosynchronous satellite theory around an equilibrium position', Astron. Astrophys. 284, 281–284.

    Google Scholar 

  • Soop, E. M.: 1994, Handbook to Geostationary Orbits, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Szebehely, V.: 1967, Theory of Orbits, Academic Press, New York.

    Google Scholar 

  • Wytrzyszczak, I.: 1998, 'Stationary orbits around the Earth and Mars', Artif. Satel. 33, 11–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lara, M., Elipe, A. Periodic Orbits Around Geostationary Positions. Celestial Mechanics and Dynamical Astronomy 82, 285–299 (2002). https://doi.org/10.1023/A:1015046613477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015046613477

Navigation