Skip to main content
Log in

Detection of intermediate metabolites of benzene biodegradation under microaerophilic conditions

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The intermediate metabolites of benzene transformation by a microaerophilic bacterial consortium, adapted to degrade gasoline and benzene at low concentrations of dissolved oxygen (<1 mg l-1), were identified. The examined range of initial DO concentration, 0.05 to 1 mg l-1, was considerably lower than the previously reported values believed to be necessary to initiate benzene biodegradation. An extensive transformation of benzene, higher than the theoretical predictions for its aerobic oxidation, was observed. Phenol was identified as the most stable and the major intermediate metabolite which was subsequently transformed into catechol and benzoate. The use of 13C-labeled compounds identified benzene as the source of phenol, and phenol as the source of catechol and benzoate, suggesting the involvement of a monooxygenase enzymatic system in biodegradation of benzene at low DO concentrations. A metabolic sequence was proposed to describe the simultaneous detection of catechol and benzoate during the microaerophilic transformation of benzene. The results of this work demonstrate that it is possible to transform benzene, a highly carcinogenic hydrocarbon and a major contaminant of groundwater, to more easily biodegradable compounds in the presence of very small amounts of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axcell BC &Geary PJ (1975) Purification and some properties of a soluble benzene-oxidizing system from a strain of Pseudomonas. Biochem. J. 146: 173-183

    Google Scholar 

  • Berry DF,Francis AJ &Bollag JM (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol. Rev. 51: 43-59

    Google Scholar 

  • Caldwell ME &Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ. Sci. Technol. 34: 1216-1220

    Google Scholar 

  • Chiang CY,Salanitro J,Chai EY,Colthart JD &Klein CL (1989) Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer-data analysis and computer modeling. Groundwater 27: 823-834

    Google Scholar 

  • Coates JD,Chakraborty R,Lack JG,O'Conner SM, Cole KA,Bender KS &Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411: 1039-1043

    Google Scholar 

  • Evans WC &Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann Rev. Microbiol. 42: 289-317.

    Google Scholar 

  • Gibson DT,Koch JR &Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons. I. Enzymatic formation of catechol from benzene. Biochemistry 7: 2653-2662

    Google Scholar 

  • Gibson DT,Cardini GE,Masales FC &Kallio RE (1970) Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry 9: 1631-1639

    Google Scholar 

  • Gorny N &Schink B (1994) Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl. Environ. Microbiol. 60: 3396-3400

    Google Scholar 

  • Goud DH,Parekh LJ &Ramakrishnan CV (1985) Bacterial profile of petrochemical industry effluents. Environ. Pollut. 39: 27-37

    Google Scholar 

  • Grbic-Galic D &Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254-260

    Google Scholar 

  • Grbic-Galic D (1989) Microbial degradation of homocyclic and heterocyclic aromatic hydrocarbons under anaerobic conditions. J. Ind. Microbiol. 30: 237-253

    Google Scholar 

  • Hack CJ,Woodley JM,Lilly MD &Liddell JM (1994) The production of Pseudomonas putida for the hydroxylation of toluene to its cis-glycol. Appl Microbiol. Biotechnol. 41: 495-499

    Google Scholar 

  • Harwood CS &Gibson J (1997) Shedding light on anaerobic benzene ring degradation: A process unique to prokaryotes? J. Bacteriol. 179: 301-309

    Google Scholar 

  • Harwood CS,Burchhardt G,Hermann H &Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol. Rev. 22: 439-458

    Google Scholar 

  • Heider J & Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243: 577-596

    Google Scholar 

  • Hutchins SR (1991) Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl. Environ. Microbiol. 57: 2403-2407

    Google Scholar 

  • Kazumi J,Caldwell ME,Suflita JM,Lovley DR &Young LY (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ. Sci. Technol. 31: 813-818

    Google Scholar 

  • Kitayama A,Suzuki E,Kawakami Y &Nagamune T (1996) Gene organization and low regiospecificity in aromatic-ring hydroxylation of a benzene monooxygenase of Pseudomonas aeruginosa JI104. J. Ferment. Bioengin. 82: 421-425

    Google Scholar 

  • Knoll G &Winter J (1987) Anaerobic degradation of phenol in sewage sludge: Benzoate formation from phenol and CO2 in the presence of hydrogen. Appl. Microbiol. Biotechnol. 25: 384-391

    Google Scholar 

  • Krooneman J,Wieringa EBA,Moore ERB,Gerritse J,Prins RA &Gottschal JC (1996) Isolation of Alcaligenes sp. Strain L6 at low oxygen concentration and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Appl. Environ. Microbiol. 62: 2427-2434

    Google Scholar 

  • Krooneman J,Van den Akker S,Pedro Gomes TM,Forney LJ &Gottschal JC (1999) Degradation of 3-chlorobenzoate under low-oxygen conditions in pure and mixed cultures of the anoxygenic photoheterotroph Rhodopseudomonas palustris DCP3 and an aerobic Alcaligenes species. Appl. Environ. Microbiol. 65: 131-137

    Google Scholar 

  • Kuhn EP,Zeyer J,Eicher P &Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol. 54: 490-496

    Google Scholar 

  • Lack A &Fuchs G (1994) Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp. Arch. Microbiol. 161: 306-311

    Google Scholar 

  • Lee MD,Thomas JM, Borden JC,Bedienst PB,Ward CH &Wilson JT (1988) Biorestoration of aquifers contaminated with organic compounds. Crit. Rev. Environ. Control. 18: 29-89

    Google Scholar 

  • Li T,Bisaillon JG,Villemur R,Letourneau L,Bernard K,Lepine F &Beaudet R (1996) Isolation and characterization of a new bacterium carboxylating phenol to benzoic acid under anaerobic conditions. J. Bacteriol. 178: 2551-2558

    Google Scholar 

  • Lodaya M,Lakhwala F,Rus E,Singh M,Lewandowski G &Sofer S (1991) Biodegradation of benzene and a BTX-mixture using immobilized activated sludge. J. Environ. Sci. Health [A] 26: 121-137

    Google Scholar 

  • Lovley DR,Coates JD,Woodward JC &Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61: 953-958

    Google Scholar 

  • Olsen RH,Mikesell MD,Kukor JJ (1994a) Enumeration and characterization of BTEX-degrading bacteria from hypoxic environments functional with mixed electron acceptors. Res. Microbiol. 145: 47-49.

    Google Scholar 

  • Olsen RH,Kukor JJ,Kaphammer B (1994b) A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J Bacteriol. 176: 3749-3756

    Google Scholar 

  • Olsen RH,Kukor JJ,Byrne AM,Johnson GR (1997) Evidence for the evolution of a single component phenol/cresol hydroxylase from a muticomponent toluene monooxygenase. J. Ind. Microbiol. Biotechnol. 19: 360-368.

    Google Scholar 

  • Phelps CD,Kazumi J &Young LY (1996) Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbil. Let. 145: 433-437

    Google Scholar 

  • Ribbons DW &Eaton RW (1982) Chemical transformations of aromatic hydrocarbons that support the growth of microorganisms. In: Chakrabarty AM (Ed), Biodegradation and Detoxification of Environmental Pollutants (pp. 59-84). CRC Press, Boca Raton, FL.

    Google Scholar 

  • Schink B,Brune A &Schnell S (1992) Anaerobic degradation of aromatic compounds. In: Winkelmann G (Ed), Microbial Degradation of Natural Compounds (pp. 219-242), VCH, Weinheim.

  • Tschech A &Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch. Microbiol. 148: 213-217

    Google Scholar 

  • Viliesid F &Lilly MD (1992) Influence of dissolved oxygen tension on the synthesis of catechol 1,2-dioxygenase by Pseudomonas putida. Enzyme Microb. Technol. 14: 561-565

    Google Scholar 

  • Vogel TM &Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200-202

    Google Scholar 

  • Wilson LP &Bouwer EJ (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions. J. Ind. Microbiol. Biotechnol. 18: 116-130

    Google Scholar 

  • Yarmoff JJ,Kawakami Y,Yago Y,Maruo H &Nishimura H (1988) Cis-benzeneglycol production using a mutant Pseudomonas strain. J. Ferment. Technol. 66: 305-312.

    Google Scholar 

  • Yerushalmi L &Guiot SR (1998) Kinetics of biodegradation of gasoline and its hydrocarbon constituents. Appl. Microbiol. Biotechnol. 49: 475-481

    Google Scholar 

  • Yerushalmi L,Manuel MF &Guiot SR (1999) Biodegradation of gasoline and BTEX in a microaerophilic biobarrier. Biodegradation 10: 341-352

    Google Scholar 

  • Yerushalmi L,Guiot SR (2001) Biodegradation of benzene in a laboratory-scale biobarrier at low dissolved oxygen concentrations. Bioremed. J. 5: 63-77

    Google Scholar 

  • Zhou N,Jenkins A,Chan Kwo Chion CKN &Leak DJ (1999) The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Appl. Environ. Microbiol. 65: 1589-1595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge R. Guiot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yerushalmi, L., Lascourreges, JF., Rhofir, C. et al. Detection of intermediate metabolites of benzene biodegradation under microaerophilic conditions. Biodegradation 12, 379–391 (2001). https://doi.org/10.1023/A:1015038901626

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015038901626

Navigation