Skip to main content
Log in

Fluoranthene degradation in Pseudomonas alcaligenes PA-10

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Pseudomonas alcaligenes strain PA-10 degrades thefour-ring polycyclic aromatic hydrocarbon fluoranthene, co-metabolically. HPLC analysisof the growth medium identified four intermediates, 9-fluorenone-1-carboxylicacid; 9-hydroxy-1-fluorene carboxylic acid; 9-fluorenone and 9-fluorenol, formedduring fluoranthene degradation. Pre-exposure of PA-10 to 9-fluorenone-1-carboxylic acidand 9-hydroxy-1-fluorene-carboxylic acid resulted inincreases in fluoranthene removal, while pre-exposure to9-fluorenone and 9-fluorenol resulted in a decrease influoranthene degradation. The rate of indole transformation was similarly affected by pre-exposureto these metabolic intermediates, indicating a link between fluoranthenedegradation and indigo formation in this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhushan B,Samanta SK &Jain RK (2000) Indigo production by naphthalene-degrading bacteria. Lett. Appl. Microbiol. 31: 5-9

    Google Scholar 

  • Boldrin B,Tiehm A &Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene and pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 59: 1927-1930

    Google Scholar 

  • Bos RP (1987) Fluoranthene, a carcinogen? Mutat. Res. 189: 187.

    Google Scholar 

  • Bos RP,Prinsen WJC,van Rooy JGM,Jongeneelen FJ,Theuws JLG &Henderson PTh (1987) Fluoranthene, a volatile mutagenic compound, present in creosote and coal tar. Mutat. Res. 187: 119-125

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254

    Google Scholar 

  • Casellas M,Grifoll M,Bayona JM &Solanas AM (1997) New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl. Environ. Microbiol. 63: 819-826

    Google Scholar 

  • Cerniglia CE &Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment (pp 41-68). CRC Press, Inc., Boca Raton, FL

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351-368

    Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4: 331-338

    Google Scholar 

  • Chen S &Aitken MD (1999) Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophilia P15. Environ. Sci. Technol. 33: 435-439

    Google Scholar 

  • Churchill SA,Harper JP &Churchill PF (1999) Isolation and characterisation of a Mycobacterium species capable of degrading three-and four-ring aromatic and aliphatic hydrocarbons. Appl. Environ. Microbiol. 65: 549-552

    Google Scholar 

  • Ensley BD,Ratzkin BJ, Osslund TD,Simon MJ,Wackett LP &Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222: 167-169

    Google Scholar 

  • Gordon L.M. (2001) Physiology and genetics of fluoranthene degradation in Pseudomonas alcaligenes PA-10. PhD Thesis, National University of Ireland, Cork.

    Google Scholar 

  • Gordon LM &Dobson ADW (2002) Isolation and characterisation of a gene encoding a novel oxygenase from the fluoranthene degrading strain Pseudomonas alcaligenes PA-10 (manuscript in preparation)

  • Heitkamp MA,Franklin W &Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterisation of pyrene-degrading bacterium. Appl. Environ. Microbiol. 54: 2549-2555

    Google Scholar 

  • Heitkamp MA,Freeman JP Miller DW &Cerniglia CE (1988) Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54: 2556-2565

    Google Scholar 

  • Juhasz AL &Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int. Biodet. Biodeg. 45: 57-88

    Google Scholar 

  • Kanaly RA & Harayama S (2000) Biodegradation of highmolecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182: 2059-2067

    Google Scholar 

  • Keil H,Saint CM &Williams PA (1987) Gene organization of the first catabolic operon of TOL plasmid pWW53: production of indigo by the xylA gene product. J. Bacteriol. 169: 764-770

    Google Scholar 

  • Kelley I,Freeman JP,Evans FE &Cernglia CE (1991) Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium sp. Appl. Environ. Microbiol. 57: 636-641

    Google Scholar 

  • Kelley I,Freeman JP,Evans FE &Cernglia CE (1993). Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 59: 800-806

    Google Scholar 

  • Mahaffey WR,Gibson DT &Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benzo[a]anthracene. Appl. Environ. Microbiol. 54: 2415-2423

    Google Scholar 

  • Mermot N,Harayama S &Timmins KT (1986) New route to bacterial production of indigo. Bio/Technology 4: 321-324

    Google Scholar 

  • O'Connor KE,Dobson ADW &Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Environ. Microbiol. 63: 4287-4291

    Google Scholar 

  • Rehmann, K,Hertkorn N &Kettrup AA (2001) Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth. Microbiology 147: 2783-2794

    Google Scholar 

  • Rummel AM,Trosko JE,Wilson MR &Upham BL (1999) Polycyclic aromatic hydrocarbons with bay-like regions inhibited gap-junctional intercellular communication and stimulated MAPK activity. Toxicol. Sci. 49, 232-240

    Google Scholar 

  • Sepic E,Bricelj M &Leskovesk H (1998) Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1: isolation and identification of metabolites. J. Appl. Microbiol. 85: 746-754

    Google Scholar 

  • Weissenfels WD,Beyer M,Klein J &Rehm HJ (1991) Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl. Microbiol. Biotechnol. 34: 528-535

    Google Scholar 

  • Ye D,Siddiqi MA,Maccubbin AE,Kumar S &Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ. Sci. Technol. 30: 136-142

    Google Scholar 

  • Yen K-M &Serdar CM (1988) Genetics of naphthalene catabolism in pseudomonads. Crit. Rev. Microbiol. 15: 247-269

    Google Scholar 

  • Yen K-M,Karl R,Blatt LM,Simon MJ,Winter RB,Fausset PR,Lu HS,Harcourt AA &Chen KK (1992) Cloning and characterisation of a Pseudomonas mendocina KR1 gene cluster encoding toluene dioxygenase. J. Bacteriol. 173: 5315-5327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, L., Dobson, A.D. Fluoranthene degradation in Pseudomonas alcaligenes PA-10. Biodegradation 12, 393–400 (2001). https://doi.org/10.1023/A:1015029519142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015029519142

Navigation