Skip to main content
Log in

Rate-equation theory of sub-Poissonian laser light

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Lasers essentially consist of single-mode optical cavities containing two-level atoms with a supply of energy called the pump and a sink of energy, perhaps an optical detector. The latter converts the light energy into a sequence of electrical pulses corresponding to photo-detection events. It was predicted in 1984 on the basis of Quantum Optics and verified experimentally shortly thereafter that when the pump is non-fluctuating the emitted light does not fluctuate much. Precisely, this means that the variance of the number of photo-detection events observed over a sufficiently long period of time is much smaller than the average number of events. Light having that property is said to be'sub-Poissonian'. The theory presented rests on the concept introduced by Einstein around 1905, asserting that matter may exchange energy with a wave at angular frequency ω only by multiples of ħω. The optical field energy may only vary by integral multiples of ħω as a result of matter quantization and conservation of energy. A number of important results relating to isolated optical cavities containing two-level atoms are first established on the basis of the laws of Statistical Mechanics. Next, the laser system with a pump and an absorber of radiation is treated. The expression of the photo-current spectral density found in that manner coincides with the Quantum Optics result. The concepts employed in this paper are intuitive and the algebra is elementary. The paper supplements a previous tutorial paper (J. Arnaud, Opt. Quantum. Electron., 27 1995) in establishing a connection between the theory of laser noise and Statistical Mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnaud, J. Opt. Lett. 13 728, 1988.

    Google Scholar 

  • Arnaud, J. Opt. Quantum Electron. 27 225, 1995.

    Google Scholar 

  • Arnaud, J. Quantum Semicl. Opt. 9 507, 1997.

    Google Scholar 

  • Arnaud, J. J.-M. Boé, L. Chusseau and F. Philippe. Am. J. Phys. 67 215, 1999.

    Google Scholar 

  • Arnaud, J., L. Chusseau and F. Philippe. Phys. Rev. B 62 13,482, 2000.

    Google Scholar 

  • Arnaud, J. and M. Estéban. IEE Proc. J 137 55, 1990.

    Google Scholar 

  • Ben-Ya'acov, U. Phys. Rev. D 23 1441, 1981.

    Google Scholar 

  • Chusseau, L. and J. Arnaud. 2001 'Monte Carlo simulation of laser diodes sub-Poissonian light statistics', www.arXiv.org:quant-ph/0105078.

  • Davidovitch, L. Rev. Mod. Phys. 68 127, 1996.

    Google Scholar 

  • Elk, M. Phys. Rev. A 54 4351, 1996.

    Google Scholar 

  • Funk, A.C. and M. Beck. Am. J. Phys. 65 492, 1997.

    Google Scholar 

  • Gillespie, D.T. Markov Processes: An Introduction for Physical Scientists, Academic Press, San Diego, 1992.

    Google Scholar 

  • Golubev, Y.M. and I. Sokolov. Sov. Phys.-JETP 60 234, 1984.

    Google Scholar 

  • Gordon, J.P. Phys. Rev. 161 367, 1967.

    Google Scholar 

  • Greenstein, G. and A.G. Zajonc. Am. J. Phys. 63 743, 1995.

    Google Scholar 

  • Jakeman, E. and R. Loudon. J. Phys. Pt. A Gen. 24 5339, 1991.

    Google Scholar 

  • Katanaev, I.I. and A.S. Troshin. Sov. Phys.-JETP 65 268, 1987.

    Google Scholar 

  • Khazanov, A.M., G.A. Koganov and E.P. Gordov. Phys. Rev. A 42 3065, 1990.

    Google Scholar 

  • Koczyk, P., P. Wiewior and C. Radzewicz. Am. J. Phys. 64 240, 1996.

    Google Scholar 

  • Kubo, R., H. Ichimura, T. Usui and N. Hashizume. Statistical Mechanics. North-Holland, Amsterdam, 1964.

    Google Scholar 

  • Kuhn, T. Black-Body Theory and the Quantum Discontinuity 1894-1912. The University of Chicago Press, Chicago, 1987.

    Google Scholar 

  • Lamb, W.E. Appl. Phys. B-Lasers O. 60 77, 1995.

    Google Scholar 

  • Loudon, R. The Quantum Theory of Light, Oxford University Press, Oxford 1983.

    Google Scholar 

  • Mandel, L. and E. Wolf. Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  • Meystre, P. and D.F. Walls (eds.) Nonclassical Effects in Quantum Optics, American Institute of Physics, New-York, 1991.

    Google Scholar 

  • Milonni, P.W. and J.H. Eberly. Lasers, John Wiley & Sons, New-York, 1988.

    Google Scholar 

  • Papoulis, A. Probability, Random Variables, and Stochastic Processes, MacGraw-Hill, New York, 1965.

    Google Scholar 

  • Ralph, T.C. and C.M. Savage. Quantum Opt. 5 113, 1993.

    Google Scholar 

  • Raymer, M.G. Am. J. Phys. 58 11, 1990.

    Google Scholar 

  • Richardson, W.H. and Y. Yamamoto. Phys. Rev. Lett. 66 1963, 1991.

    Google Scholar 

  • Ritsch, H., P. Zoller, C.W. Gardiner and D.F. Walls. Phys. Rev. A 44 3361, 1991.

    Google Scholar 

  • Sargent, M., M.O. Scully and W.E. Lamb. Laser Physics, Addison-Wesley, London, 1974.

    Google Scholar 

  • Savage, C.M. Phys. Rev. Lett. 601828, 1988.

    Google Scholar 

  • Schroeder, D.V. Introduction to Thermal Physics, Addison-Wesley, New-York, 1999.

    Google Scholar 

  • Short, R. and L. Mandel. Phys. Rev. Lett. 51 384, 1983.

    Google Scholar 

  • Siegman, A.E. Lasers, University Science Books, Mill Valley, 1986.

    Google Scholar 

  • Siegman, A.E. Appl. Phys. B-Lasers O. 60 247, 1995.

    Google Scholar 

  • Walls, D.F. and G.J. Milburn: 1994, Quantum Optics. Berlin: Springer-Verlag.

    Google Scholar 

  • Yamamoto, Y. (ed.) Coherence, Amplification and Quantum Effects in Semiconductor lasers (see Chapter 'Modulation and noise spectra of complicated laser structures' by O. Nilsson), Wiley-Interscience publishing, New-York, 1991.

    Google Scholar 

  • Yamamoto, Y. and A. Imamoglu. Mesoscopic Quantum Optics, John Wiley & Sons, New-York, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnaud, J. Rate-equation theory of sub-Poissonian laser light. Optical and Quantum Electronics 34, 393–410 (2002). https://doi.org/10.1023/A:1015028120667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015028120667

Navigation