Skip to main content
Log in

Perspectives paper: First principles modeling of high-k gate dielectrics

  • Published:
Journal of Computer-Aided Materials Design

Abstract

Aggressive scaling has led to silicon dioxide (SiO2) gate dielectrics as thin as 15 Å in state-of-the-art CMOS technologies. As a consequence, static leakage power due to direct tunneling through the gate oxide has been increasing at an exponential rate. As technology roadmaps call for sub-10 Å gate oxides within the next five years, a variety of alternative high-k materials are being investigated as possible replacements for SiO2. The higher dielectric constants in these materials allow the use of physically thicker films, potentially reducing the tunneling current while maintaining the gate capacitance needed for scaled device operation. Recognizing that the current Si/SiO2 system benefits from nearly 30 years of research, developing a replacement material for SiO2 presents an immense challenge. This has prompted recent interest in novel computational approaches, such as first principles density functional theory (DFT) simulations, to computationally screen candidate dielectrics by predicting their properties based on the microscopic interactions within the system.

This paper provides perspectives on the application of DFT simulations to address challenging problems of high-k gate dielectric research. We provide background and motivation for the development of high-k materials and highlight opportunities for theoretical study of such materials. We also describe specific examples of recent first principles work related to two particularly promising materials systems: silicates and aluminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Packan, P., Science, 285 (1999) 2079.

    Google Scholar 

  2. Dennard, R., Gaensslen, F., Yu, H.-N., Rideout, V., Bassous, E. and LeBlanc, A., IEEE J. Solid-State Circuits, SC-9 (1974) 256.

    Google Scholar 

  3. Ghani, T., Mistry, K., Packan, P., Thompson, S., Stettler, M., Tyagi, S. and Bohr, M., Symposium on VLSI Technology Digest, 2000.

  4. Lo, S.-H., Buchanan, D. and Taur, Y., IBM J. Res. Develop., 43 (1999) 327.

    Google Scholar 

  5. Pollak, F., 32nd Annual International Symposium on Microarchitecture, Haifa, Israel, November 16–18, 1999.

  6. Lo, S., Buchanan, D., Taur, Y. and Wang, W., IEEE Electron Dev. Lett., 18 (1997) 209.

    Google Scholar 

  7. Muller, D., Sorsch, T., Moccio, S., Baumann, F., Evans-Lutterodt, K. and Timp, G., Nature, 399 (1999) 758.

    Google Scholar 

  8. Schulz, M., Nature, 399 (1999) 729.

    Google Scholar 

  9. Tang, S., Wallace, R., Seabaugh, A. and King-Smith, D., Appl. Surface Science, 135 (1998) 137.

    Google Scholar 

  10. Kaneta, C., Yamasaki, T., Uchiyama, T., Uda, T. and Terakura, K., Microelect. Eng., 48 (1999) 117.

    Google Scholar 

  11. Kingon, A., Maria, J.-P. and Streiffer, S., Nature, 406 (2000) 1032.

    Google Scholar 

  12. Wilk, G., Wallace, R. and Anthony, J., J. Appl. Phys., 89 (2001) 5243.

    Google Scholar 

  13. Buchanan, D., IBM J. Res. Develop., 43 (1999) 245.

    Google Scholar 

  14. Cheng, B., Cao, M., Vande Voorde, P., Greene, W., Stork, H., Yu, Z. and Woo, J., IEEE Trans. Electron Dev., 46 (1999) 261.

    Google Scholar 

  15. Lucovsky, G., In Philips, J.C. and Thorpe, M.F. (Eds.), Phase Transitions and Self-Organization in Electronic and Molecular Networks, Kluwer Academic Publishers/Plenum Publishers, 2001.

  16. Kittel, C., Introduction to Solid State Physics, 7th edition, John Wiley & Sons, Inc., New York, 1996.

    Google Scholar 

  17. Cho, K., Comput. Mat. Sci. (in press).

  18. Chaneliere, C., Autran, J., Devine, R. and Balland, B., Mat. Sci. Eng., R22 (1998) 269.

    Google Scholar 

  19. Alers, G., Werder, D., Chabal, Y., Lu, H., Gusev, E., Garfunkel, E., Gustafsson, T. and Urdahl, R., Appl. Phys. Lett., 73 (1998) 1517.

    Google Scholar 

  20. Campbell, S., Gilmer, D., Wang, X., Hsich, M., Kim, H., Gladfelter, W. and Yan, J., IEEE Trans. Electron Dev., 44 (1997) 104.

    Google Scholar 

  21. Campbell, S., Smith, R., Hoilien, N., He, B. and Gladfelter, W., Proceedings of MRS Workshop on High-k Gate Dielectrics, New Orleans, 2000, p. 9.

  22. Nishioka, Y., Shinriki, H. and Mukai, K., J. Appl. Phys., 61 (1987) 2335.

    Google Scholar 

  23. Wilk, G. and Wallace, R., Appl. Phys. Lett., 74 (1999) 2854.

    Google Scholar 

  24. Wilk, G. and Wallace, R., Appl. Phys. Lett., 76 (2000) 112.

    Google Scholar 

  25. Wilk, G., Wallace, R. and Anthony, J., J. Appl. Phys., 87 (2000) 484.

    Google Scholar 

  26. Lee, J., Qi, W., Nieh, R., Lee, B., Kang, L., Onishi, K., Jeon, Y. and Dharmarjan, E., Proceedings of MRS Workshop on High-k Gate Dielectrics, New Orleans, 2000, p. 23.

  27. Copel, M., Gribelyuk, M. and Gusev, E., Appl. Phys. Lett., 76 (2000) 436.

    Google Scholar 

  28. Perkins, C., Triplett, B., McIntyre, P., Saraswat, K., Haukka, S. and Tuominen, M., unpublished.

  29. Jun, G. and Cho, K., private communication.

  30. Buchanan, D., private communication.

  31. Lucovsky, G. and Rayner, G., Appl. Phys. Lett., 77 (2000) 2912.

    Google Scholar 

  32. Hohenberg, P. and Kohn, W., Phys. Rev., 136 (1964) B864.

    Google Scholar 

  33. Kohn, W. and Sham, L., Phys. Rev., 140 (1965) A1133.

    Google Scholar 

  34. Payne, M., Teter, M., Allan, D., Arias, T. and Joannopoulos, J., Rev. Modern Phys., 64, 1045, 1992.

    Google Scholar 

  35. Sze, S., invited talk at Center for Integrated Systems, Stanford University, 1999.

  36. de Koning, M., Cai, W., Antonelli, A. and Yip, S., Comput. Sci. Eng., 2 (2000) 88.

    Google Scholar 

  37. Godby, R., Schluter, M. and Sham, L., Phys. Rev. B, 37 (1988) 10159.

    Google Scholar 

  38. Hybertsen, M. and Louie, S., Phys. Rev. B, 34 (1986) 5390.

    Google Scholar 

  39. Zakharov, O., Rubio, A., Blase, X., Cohen, M. and Louie, S., Phys. Rev. B, 50 (1994) 10780.

    Google Scholar 

  40. Zhang, S., Cohen, M., Louie, S., Tomanek, D. and Hybertsen, M., Phys. Rev. B, 41 (1990) 10058.

    Google Scholar 

  41. Kralik, B., Chang, E. and Louie, S., Phys. Rev. B, 57 (1998) 7027.

    Google Scholar 

  42. Pulci, O., Onida, G., Shkrebtii, A., Del Sole, R. and Adolph, B., Phys. Rev. B, 55 (1997) 6685.

    Google Scholar 

  43. Geller, C., Wolf, W., Picozzi, S., Continenza, A., Asahi, R., Mannstadt, W., Freeman, A. and Wimmer, E., Appl. Phys. Lett., 79 (2001) 368, 2001.

    Google Scholar 

  44. Xu, Y. and Ching, W., Phys. Rev. B, 44 (1991) 11048.

    Google Scholar 

  45. Xu, Y. and Ching, W., Phys. Rev. B, 51 (1995) 17379.

    Google Scholar 

  46. Gonze, X. and Lee, C., Phys. Rev. B, 55 (1997) 10355.

    Google Scholar 

  47. Gonze, X., Allan, D. and Teter, M., Phys. Rev. Lett., 68 (1992) 3603.

    Google Scholar 

  48. Bernardini, F., Fiorentini, V. and Vanderbilt, D., Phys. Rev. Lett., 79 (1997) 3958.

    Google Scholar 

  49. Bernardini, F. and Fiorentini, V., Phys. Rev. B, 58 (1998) 15292.

    Google Scholar 

  50. Jun, G., Rignanese, G.-M., Gonze, X. and Cho, K., private communication.

  51. Jun, G., Cho, K. and Dutton, R., private communication.

  52. Kawamoto, A., Jameson, J., Griffin, P., Cho, K. and Dutton, R., IEEE Elect. Device Lett., 22 (2001) 14.

    Google Scholar 

  53. Kawamoto, A., Cho, K., Griffin, P. and Dutton, R., J. Appl. Phys., 90 (2001) 1333.

    Google Scholar 

  54. Kawamoto., A., Electrical engineering, Ph.D. Thesis, Stanford University, 2001.

  55. Haverty, M., Kawamoto, A., Jun, G., Cho, K. and Dutton, R., MRS Proceedings, 2001.

  56. Haverty, M., Materials science and engineering, M.S. Thesis, Stanford University, 2001.

  57. Haverty, M., Kawamoto, A., Cho, K. and Dutton, R., Appl. Phys. Lett., (2002), submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamoto, A., Cho, K. & Dutton, R. Perspectives paper: First principles modeling of high-k gate dielectrics. Journal of Computer-Aided Materials Design 8, 39–57 (2001). https://doi.org/10.1023/A:1015011207910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015011207910

Keywords

Navigation