Skip to main content
Log in

On the dynamical response of Lake Chapala, Mexico to lake breeze forcing

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fluctuations in the atmospheric characteristics, as well as variations in the water level of Lake Chapala are discussed. Field measurements of the atmospheric characteristics and lake level during December 1996 through January 1997 are described; using spectrum analysis of synchronous time series. The findings suggest that the variability is due to the diurnal cycle of atmospheric elements. Lake breeze circulation plays an important role in the area of Lake Chapala; since it was registered in 83% of the data. Periodic fluctuations in atmospheric pressure and wind generate significant seiche amplitudes in the lake, with the periods of about 6 h. With the help of a simple model, the seiche parameters are estimated. The amplitude of one-nodal seiches on one of the edges of the lake; is on average equal to 18 mm. This wave should generate currents of approximately 0.012 m s−1 at the lake`s centre in the area of the nodal line. The experimental results on the thermal regime and circulation of Lake Chapala are discusssed as well. Surface temperature variations were registered at the eastern part of the lake. In all cross-sections, typical spatial variations of 3 °C were registered, over a distance of 100–300 m. A bouy station registered movements of an internal thermal front in the body of the water. The leading edge of the front was accompanied by intense internal waves, in the form of internal KdeV solitones. The front near the buoy station was produced by the movement of a warm body of water travelling from the shallow eastern part of the lake and trigered by morning breeze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendat, J. S. & A. G. Piersol, 1967. Measurement and Analysis of Random Data. Wiley & Sons, New York: 409 pp.

    Google Scholar 

  • Bergamasco, A. & M. Gacic, 1996. Baroclinic response of the Adriatic Sea to an Episode of Bora Wind. JPO, 26: 1354–1369.

    Google Scholar 

  • Burman, E. A., 1969. Lacal Wind. Hydrometeorizdat, Leningrad: 344 pp.

    Google Scholar 

  • Burman, E. A., G. P. Ivus & A. E. Filonov, 1983. The use of the spectral analysis for estimation of some characteristics of breeze structure. Izvestia. Atmosph. and Ocean Physics. 19: 376–381.

    Google Scholar 

  • Filatov, N. N., 1983. Dynamics of Lakes. Hydrometeorizdat, Sant-Petersburg: 167 pp.

    Google Scholar 

  • Filonov, A. E., C. O. Monzon & I. E. Tereshchenko, 1996. A technique for fast conductivity-temperature-depth Oceanographic surveys. Geofisica Internacional. 35: 415–420.

    Google Scholar 

  • Filonov, A. E. & I. E. Tereshchenko, 1997. Preliminary results on the thermic regime of Lake Chapala, Mexico. Suppl. to EOS, Transact., AGU 78: 46.

    Google Scholar 

  • Filonov, A. E., I. E. Tereshchenko & C. O. Monzon, 1998. On the Oscillations of the Hydrometeorological characteristics in the region of Lake Chapala in time frames of the days to tens of years. Geofisi. Int. 37: 293–307.

    Google Scholar 

  • Filonov, A. E., 1998. Morira el lago de Chapala? Existe la pocibilidad de salvarlo. Teorema. 3: 16–18.

    Google Scholar 

  • Filonov, A. E. & I. E. Tereshchenko, 1999a. Thermal Fronts and Nonlinear Internal Waves in Shallow Tropical Lake Chapala. Russ. Meteorol. Hydrol. 1: 94–102.

    Google Scholar 

  • Filonov, A. E. & I. E. Tereshchenko, 1999b. Thermal lenses and internal solitons en Lake Chapala, Mexico. Chin. J. Oceanol. Limnol. 17(4): 308–314.

    Google Scholar 

  • Gonella, J., 1972. A rotary-components method for analysis meteorological and oceanographic vector time series. Deep Sea Res. 19: 833–846.

    Google Scholar 

  • Graf, W. H. & C. H. Mortimer (eds), 1978. Hydrodynamics of Lakes. Elsevier, Amsterdam: 360 pp.

    Google Scholar 

  • Grimshaw, R., 1998. Internal solitary waves in shallow seas and lakes. Phys. Processes Lakes Oceans: coastal and estuerine studies. 54: 227–240.

    Google Scholar 

  • Holloway, P. E., 1987. Internal hydraulic jumps and solitons at a shelf break region on the Australian North West Shelf. J. Geophys. Res. 92: 5405–5416.

    Google Scholar 

  • Hunkins, K. & M. Fiegel, 1973. Internal undular surges in Seneca Lake: a natural occurrence of solitons. J. Geophys. Res. 78: 539–548.

    Google Scholar 

  • Jaurégui, E., 1995. Rainfall fluctuations and tropical storm activity in Mexico. Erdrunde, Band 49: 39–48.

    Google Scholar 

  • Jenkins, G. M. & D. G. Watts, 1969. Spectral Analysis and its Applications. Holden-Day, San Francisco: 672 pp.

    Google Scholar 

  • Kakutani, T. & N. Yamasaki, 1978. Solitary waves on a two-layer fluid, J. Phys. Soc. Japon, 45: 674–679.

    Google Scholar 

  • Konyaev, K. V., 1990. Spectral Analysis of Physical Oceanographic Data. A. A. Balkema, Rotterdam: 200 pp.

    Google Scholar 

  • Konyaev, K. V. & K. D. Sabinin, 1992. Waves in the Interior of the Ocean. Hydrometeorizdat, Saint-Petersburg: 272 pp.

    Google Scholar 

  • LeBlond, P. H. & L. A. Mysak, 1978. Waves in the Ocean. Elsevier, Amsterdam: 602 pp.

    Google Scholar 

  • Mason, M., C. G. Guzkovska & F. A. Sreet-Perrot, 1994. The response of lake levels and areas to climate change. Climate change, 27: 124–136.

    Google Scholar 

  • Mooers, C. N. K., 1973. A technique for the cross-spectrum analysis of pairs of complex valued time series with emphasis on properties of polarized components and rotational invariants. Deep Sea Res. 20: 1129–1141.

    Google Scholar 

  • Ostrovsky, L. A. &, Yu. A. Stepanyants, 1989. Do internal solitons exist in the ocean? Rev. of Geophys. 27: 293–310.

    Google Scholar 

  • Parsmar, R. & A. Stigebrandt, 1997. Observed damping of barotropic seiches throught baroclinic waves drag in the Gullmar Fjord. JPO 27: 849–857.

    Google Scholar 

  • Pelinovsky, E. N., 1996. Tsunami waves hydrodynamics. Acad. Sci. Russia, Inst. Appl. Physics, Nigni Novgorod: 276 pp.

  • Riehl, H., 1979. Climate and Weather in the Tropics. Academic. Press. New York: 342 pp.

    Google Scholar 

  • Sandoval, F., 1994. Pasado y futuro del lago de Chapala. UNED. Gudalajara, Mèxico: 94 pp.

    Google Scholar 

  • Scorer, R. S., 1978. Environmental Aerodinamics. Elsevier, New York: 523 pp.

    Google Scholar 

  • Simons, T. J., 1984. Effect of outflow diversion on calculation and water quality of Lake Chapala. Report Project MKX CWS-01: 23 pp.

  • Thorpe, S. A., 1971. Asymmetry of the internal seichesd in Loch Ness. Nature 231: 306–308.

    Google Scholar 

  • Thorpe, S. A., 1992. The breakup of Langmuir circulation and the instability of an array of vortices. J. Phys. Oceanogr. 22 (4): 1–35.

    Google Scholar 

  • Thorpe, S. A., 1998. Some dynamical effects of internal waves and the sloping sides of lakes. Phys. Processes Lakes Oceans: coast. estuar. Stud. 54: 441–460.

    Google Scholar 

  • Thorpe, S. A., J. M. Keen; R. Jiang & U. Lemming, 1995. High frequency internal waves in Lake Genova. Phil. Trans. r. Soc. Lond. A 354: 237–257.

    Google Scholar 

  • Turner, J. S., 1973. Buoyancy Effects in Fluids. Cambridge University Press Cambridge: 521 pp.

    Google Scholar 

  • Volzinger, N. E., K. A. Klevanny & E. N. Pelinovsky, 1989. Long-Wave Dynamics of the Coastal Zone. Hydrometeoizdat, Leningrad: 272 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filonov, A. On the dynamical response of Lake Chapala, Mexico to lake breeze forcing. Hydrobiologia 467, 141–157 (2002). https://doi.org/10.1023/A:1014998411755

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014998411755

Navigation