Skip to main content
Log in

Intermolecular relaxation has little effect on intra-peptide exchange-transferred NOE intensities

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Exchange-transferred nuclear Overhauser enhancement (etNOE) provides a useful method for determining the 3-dimensional structure of a ligand bound to a high-molecular-weight complex. Some concern about the accuracy of such structures has arisen because indirect relaxation can occur between the ligand and macromolecule. Such indirect relaxation, or spin diffusion, would lead to errors in interproton distances used as restraints in structure determination. We address this concern by assessing the extent of intermolecular spin diffusion in nineteen peptide-protein complexes of known structure. Transferred NOE intensities were simulated with the program CORONA (Calculated OR Observed NOESY Analysis) using the rate-matrix approach to include contributions from indirect relaxation between protein-ligand and intraligand proton pairs. Intermolecular spin diffusion contributions were determined by comparing intensities calculated with protonated protein to those calculated with fully deuterated protein. The differences were found to be insignificant overall, and to diminish at short mixing times and high mole ratios of peptide to protein. Spin diffusion between the peptide ligand and the protein contributes less to the etNOE intensities and alters fewer cross peaks than the well-studied intramolecular spin diffusion effects. Errors in intraligand interproton distances due to intermolecular relaxation effects were small on average and can be accounted for with the restraint functions commonly used in NMR structure determination methods. In addition, a rate-matrix approach to calculate distances from etNOESY intensities using a volume matrix comprising only intraligand intensities was found to give accurate values. Based on these results, we conclude that structures determined from etNOESY data are no less accurate due to spin diffusion than structures determined from conventional NOE intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arepalli, S.R., Glaudemans, C.P.J., Daves, Jr., G.D., Kovac, P. and Bax, A. (1995) J. Magn. Reson., B106, 195–198.

    Google Scholar 

  • Balaram, P., Bothner-By, A.A. and Breslow, E. (1972a) J. Am. Chem. Soc., 94, 4017–4018.

    Google Scholar 

  • Balaram, P., Bothner-By, A.A. and Dadok, J. (1972b) J. Am. Chem. Soc., 94, 4015–4017.

    Google Scholar 

  • Barsukov, I.L., Lian, L.Y., Ellis, J., Sze, K.H., Shaw, W.V. and Roberts, G.C.K. (1996) J. Mol. Biol., 262, 543–558.

    Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) Nucl. Acids Res., 28, 235–242.

    Google Scholar 

  • Betzel, C., Singh, T.P., Visanji, M., Peters, K., Fittkau, S., Saenger, W. and S., W.K. (1993) J. Biol. Chem., 268, 15854–15858.

    Google Scholar 

  • Bloch, F. (1957) Phys. Rev., 105, 1206–1222.

    Google Scholar 

  • Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M. (1983) J. Comput. Chem., 4, 187–217.

    Google Scholar 

  • Brünger, A.T. (1992) X-PLOR 3.1: A System for X-Ray Crystallography and NMR, Yale University Press, New Haven, CT.

    Google Scholar 

  • Buckle, A.M., Schreiber, G. and Fersht, A.R. (1994) Biochemistry, 33, 8878–8889.

    Google Scholar 

  • Campbell, A.P. and Sykes, B.D. (1993) Annu. Rev. Biophys. Biomol., 22, 99–122.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1982) J. Magn. Reson., 1982, 402–417.

  • Clore, G.M. and Gronenborn, A.M. (1983) J. Magn. Reson., 53, 423–442.

    Google Scholar 

  • Dealwis, C.G., Frazao, C., Badasso, M., Cooper, J.B., Tickle, I.J., Driessen, H., Blundell, T.L., Murakami, K., Miyazaki, H., Sueirasdiaz, J., Jones, D.M. and Szelke, M. (1994) J. Mol. Biol., 236, 342–360.

    Google Scholar 

  • Eisenmesser, E.Z., Zabell, A.P.R. and Post, C.B. (2000) J. Biomol. NMR, 17, 17–32.

    Google Scholar 

  • Foundling, S.I., Cooper, J., Watson, F.E., Cleasby, A., Pearl, L.H., Sibanda, B.L., Hemmings, A., Wood, S.P., Blundell, T.L., Valler, M.J., Norey, C.G., Kay, J., Boger, J., Dunn, B.M., Leckie, B.J., Jones, D.M., Atrash, B., Hallett, A. and Szelke, M. (1987) Nature, 327, 349–352.

    Google Scholar 

  • Frigerio, F., Coda, A., Pugliese, L., Lionetti, C., Menegatti, E., Amiconi, G., Schnebli, H.P., Ascenzi, P. and Bolognesi, M. (1992) J. Mol. Biol., 225, 107–123.

    Google Scholar 

  • Fujinaga, M., Sielecki, A.R., Read, R.J., Ardelt, W., Laskowski, M. and James, M.N.G. (1987) J. Mol. Biol., 195, 397–418.

    Google Scholar 

  • Gilmer, T., Rodriquez, M., Jordan, S., Crosby, R., Alligood, K., Green, M., Kimery, M., Wagner, C., Kinder, D., Charifson, P., Hassell, A.M., Willard, D., Luther, M., Rusnak, D., Sternbach, D.D., Mehrotra, M., Peel, M., Shampine, L., Davis, R., Robbins, J., Patel, I.R., Kassel, D., Burkhart, W., Moyer, M., Bradshaw, T. and Berman, J. (1994) J. Biol. Chem., 269, 31711–31719.

    Google Scholar 

  • Glaudemans, C.P.J., Lerner, L., Daves, Jr., G.D., Kovác, P., Venable, R. and Bax, A. (1990) Biochemistry, 29, 10906–10911.

    Google Scholar 

  • Greenblatt, H.M., Ryan, C.A. and James, M.N.G. (1989) J. Mol.Biol., 205, 201–228.

    Google Scholar 

  • Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997) J. Mol. Biol., 273, 283–298.

    Google Scholar 

  • Jackson, P.L., Moseley, H.N.B. and Krishna, N.R. (1995) J. Magn. Reson. B, 107, 289–292.

    Google Scholar 

  • Landy, S.M. and Rao, B.D.N. (1989) J. Magn. Reson., 81, 371–377.

    Google Scholar 

  • Li, Y.L., Huang, Q.C., Zhang, S.W., Liu, S.P., Chi, C.W. and Tang, Y.Q. (1994) J. Biochem. Tokyo, 116, 18–25.

    Google Scholar 

  • Lian, L.Y., Barsukov, I.L., Sutcliffe, M.J., Sze, K.H. and Roberts, G.C.K. (1994) Meth. Enzymol., 239, 657–700.

    Google Scholar 

  • Liu, H., Spielmann, P., Ulyanov, N.B., Wemmer, D.E. and James, T.L. (1995) J. Biomol. NMR, 6, 390–402.

    Google Scholar 

  • London, R.E., Perlman, M.E. and Davis, D.G. (1992) J. Magn. Reson., 97, 79–98.

    Google Scholar 

  • Lu, D.S., Futterer, K., Korolev, S., Zheng, X.L., Tan, K., Waksman, G. and Sadler, J.E. (1999) J. Mol. Biol., 292, 361–373.

    Google Scholar 

  • MacKerell, A.D.J., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R. Straub, J. and Karplus, M. (1998) J. Phys. Chem., B102, 3586–3616.

    Google Scholar 

  • Marquart, M., Walter, J., Deisenhofer, J., Bode, W. and Huber, R. (1983) Acta Crystallogr., B39, 480–490.

    Google Scholar 

  • Martin, P.D., Robertson, W., Turk, D., Huber, R., Bode, W. and Edwards, B.F.P. (1992) J. Biol. Chem., 267, 7911–7920.

    Google Scholar 

  • Moseley, H.N.B., Curto, E.V. and Krishna, N.R. (1995) J. Magn. Reson., B108, 243–261.

    Google Scholar 

  • Ni, F. (1994) Prog. NMR Spectr., 26, 517–606.

    Google Scholar 

  • Ni, F. and Zhu, Y. (1994) J. Magn. Reson., B103, 180–184.

    Google Scholar 

  • Okamoto, Y., Anan, H., Nakai, E., Morihira, K., Yonetoku, Y., Kurihara, H., Sakashita, H., Terai, Y., Takeuchi, M., Shibanuma, T. and Isomura, Y. (1999) Chem. Pharm. Bull., 47, 11–21.

    Google Scholar 

  • Post, C.B. (1992) J. Mol. Biol., 224, 1087–1101.

    Google Scholar 

  • Post, C.B., Meadows, R.P. and Gorenstein, D.G. (1990) J. Am. Chem. Soc., 112, 6796–6803.

    Google Scholar 

  • Rees, D.C. and Lipscomb, W.N. (1982) J. Mol. Biol., 160, 475–498.

    Google Scholar 

  • Shibata, C.G., Gregory, J.D., Gerhardt, B.S. and Serpersu, E.H. (1995) Arch. Biochem. Biophys., 319, 204–210.

    Google Scholar 

  • Sokolowski, T., Haselhorst, T., Scheffler, K., Weisemann, R., Kosma, P., Brade, H., Brade, L. and Peters, T. (1998) J. Biomol. NMR, 12, 123–133.

    Google Scholar 

  • St. Charles, R., Matthews, J.H., Zhang, E.L. and Tulinsky, A. (1999) J. Med. Chem., 42, 1376–1383.

    Google Scholar 

  • Steinmetzer, T., Renatus, M., Kunzel, S., Eichinger, A., Bode, W., Wikstrom, P., Hauptmann, J. and Sturzebecher, J. (1999) Eur. J. Biochem., 265, 598–605.

    Google Scholar 

  • Takeuchi, Y., Satow, Y., Nakamura, K.T. and Mitsui, Y. (1991) J. Mol. Biol., 221, 309–325.

    Google Scholar 

  • Vincent, S.J.F., Zwahlen, C., Post, C.B., Burgner, J.W., II and Bodenhausen, G. (1997) Proc. Natl. Acad. Sci. USA, 94, 4383–4388.

    Google Scholar 

  • Zheng, J. and Post, C.B. (1993) J. Magn. Reson., B101, 262–270.

    Google Scholar 

  • Zheng, J. and Post, C.B. (1996) J. Phys. Chem., 100, 2675–2680.

    Google Scholar 

  • Zheng, J.H., Trafny, E.A., Knighton, D.R., Xuong, N.H., Taylor, S.S., Teneyck, L.F. and Sowadski, J.M. (1993) Acta Crystallogr., D49, 362–365.

    Google Scholar 

  • Zolnai, Z., Juranic, N. and Macura, S. (1998) J. Biomol. NMR, 12, 333–337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabell, A.P., Post, C.B. Intermolecular relaxation has little effect on intra-peptide exchange-transferred NOE intensities. J Biomol NMR 22, 303–315 (2002). https://doi.org/10.1023/A:1014989407261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014989407261

Navigation