Skip to main content
Log in

Lipofuscins and sclerotial differentiation in phytopathogenic fungi

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Lipofuscins of lipidic and proteinaceous origin were identified by their excitation and emission spectra in phytopathogenic fungal representatives of different sclerotial differentiation types. Lipofuscin pigments in Sclerotium rolfsii, Rhizoctonia solani, Sclerotinia minor and Sclerotinia sclerotiorum showed similar excitation and emission maxima (ex-em 330–450, 330–450, 330–470 and 3307–470 nm, respectively). Sclerotial differentiation of these fungi was proceeded by a 4.2, 2.5, 2.7, 2.5 and 6, 2.9, 3.8, 3.1 fold increase of lipofuscin accumulation (per lipid and protein content), per respective fungus, as compared to their undifferentiated stage. Lipofuscin levels were higher in older than in younger mycelia and this phenomenon was more profound in S. rolfsii. Since lipofuscins are considered as indicators of oxidative stress, these data are in accordance with the hypothesis that suggests oxidative stress to be a common underlying factor in sclerotial differentiation of sclerotia-forming filamentous phytopathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wheeler BEJ, Waller JM. The production of sclerotia by Sclerotium rolfsii. II. The relationship between mycelial growth and initiation of sclerotia. Trans Brit Mycol Soc 1965; 48: 303–314.

    Article  Google Scholar 

  2. Geiger JP, Goujon M. Demonstration in mycelial extracts of a morphogenic factor responsible for the appearance of sclerotia of Corticium rolfsii Sacc. C R Acad Sci (Ser. D) 1970; 271: 41–44.

    Google Scholar 

  3. Goujon M. Physiological mechanisms in the formation of sclerotia in Corticium rolfsii (Sacc.) Curzi. Physiologie Vegetale 1970; 8: 349–360.

    CAS  Google Scholar 

  4. Georgiou DC. Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi. Mycol Res 1997; 101: 460–464.

    Article  CAS  Google Scholar 

  5. Georgiou DC, Tairis N, Sotiropoulou A. Hydroxyl radical scavengers inhibit lateral-type sclerotial differentiation and growth in phytopathogenic fungi. Mycologia 2000; 92: 825–834.

    CAS  Google Scholar 

  6. Georgiou DC, Tairis N, Sotiropoulou A. Hydroxyl radical scavengers inhibit sclerotial differentiation and growth in Sclerotinia sclerotiorum and Rhizoctonia solani. Mycol Res 2000; 104: 1191–1196.

    Article  CAS  Google Scholar 

  7. Rana SR, Munkres DK. Ageing of Neurospora crassa. V. Lipid peroxidation and decay of respiratory enzymes in an inositol auxotroph. Mech Ageing De. 1978; 7: 241–272.

    Article  CAS  Google Scholar 

  8. Hansberg W, Aguirre J. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 1990; 142: 201–221.

    Article  PubMed  CAS  Google Scholar 

  9. Toledo I, Hansberg W. Protein oxidation related to morphogenesis in Neurospora crassa. Exp Mycol 1990; 14: 184–189.

    Article  CAS  Google Scholar 

  10. Hansberg W, De Groot H, Sies H. Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Rad Biol Med 1993; 14: 287–293.

    Article  PubMed  CAS  Google Scholar 

  11. Lledias F, Rangel P, Hansberg W. Singlet oxygen is part of a hyperoxidant state generated during spore germination. Free Rad Biol Med 1999; 26: 1396–1404.

    Article  PubMed  CAS  Google Scholar 

  12. Toledo I, Noronha-Dutra AA, Hansberg W. Loss of NAD(P)-reducing power and glutathione disulfide excretion at the start of induction of aerial growth in Neurospora crassa. J Bacteriol 1991; 173: 3243–3249.

    PubMed  CAS  Google Scholar 

  13. Yin D. Biochemical basis of lipofusin, ceroid, and age pigment-like fluorophores. Free Rad Biol Med 1996; 21: 871–888.

    Article  PubMed  CAS  Google Scholar 

  14. Thaw HH, Collins PV, Brunk TU. Influence of oxygen tension, pro-oxidants and antioxidants on the formation of lipid peroxidation products (lipofuscin) in individual cultivated human glial cells. Mech Ageing Dev 1984; 24: 211–223.

    Article  PubMed  CAS  Google Scholar 

  15. Harman D. The aging process. Proc Natl Acad Sci USA 1981; 78: 7124–7128.

    Article  PubMed  CAS  Google Scholar 

  16. Fletcher LB, Dillard JC, Tappel LA. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal Biochem 1973; 52: 1–9.

    Article  PubMed  CAS  Google Scholar 

  17. Tsuchida M, Miura T, Mizutani K, Aibara K. Fluorescent substances in mouse and human sera as a parameter of in vivo lipid peroxidation. Biochim Biophys Acta 1985; 834: 196–204.

    PubMed  CAS  Google Scholar 

  18. Gutteridge CMJ, Quinlan JG, Clark I, Halliwell B. Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 1985; 835: 441–447.

    PubMed  CAS  Google Scholar 

  19. Wolff PS, Garner A, Dean TR. Free radicals, lipids and protein degradation. Trends Pharmacol Sci 1986; 11: 27–31.

    CAS  Google Scholar 

  20. Esterbauer H, Schaur JR, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 1991; 11: 81–128.

    Article  PubMed  CAS  Google Scholar 

  21. Iio T, Yoden K. Fluorescence formation and heme degradation at different stages of lipid peroxidation. Life Sci 1987; 40: 2297–2302.

    Article  PubMed  CAS  Google Scholar 

  22. Smith TM, Thor H, Hartzell P, Orrenius S. The measurement of lipid peroxidation in isolated hepatocytes. Biochem Pharmacol 1982; 31: 19–26.

    Article  PubMed  CAS  Google Scholar 

  23. Zamora R, Alaiz M, Hidalgo JF. Feed-back inhibition of oxidative stress by oxidized lipid/amino acid reaction products. Biochemistry 1997; 36: 15765–15771.

    Article  PubMed  CAS  Google Scholar 

  24. Willetts JH, Wong LAJ. The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. The Bot Rev 1980; 46: 101–165.

    Google Scholar 

  25. Le Tourneau D. Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology 1979; 69: 887–890.

    Article  Google Scholar 

  26. Agrios GN. Plant pathology. New York: Academic Press, 1988.

    Google Scholar 

  27. Snyder F, Stephens N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta 1959; 34: 244–245.

    Article  PubMed  CAS  Google Scholar 

  28. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  29. Minssen M, Munkres DK. Preparation of mitochondrial membrane proteins from Neurospora crassa: Prevention of lipid autoxidation damage by an antioxidant. Biochim Biophys Acta 1973; 291: 398–410.

    Article  PubMed  CAS  Google Scholar 

  30. Munkres DK, Colvin JH. Ageing of Neurospora crassa. II. Organic hydroperoxide toxicity and the protective role of antioxidant and the antioxygenic enzymes. Mech Ageing Dev 1976; 5: 99–107.

    Article  PubMed  CAS  Google Scholar 

  31. Munkres DK. Ageing of Neurospora crassa. IV. Induction of senescence in wild type by dietary amino acid analogs and reversal by antioxidants and membrane stabilizers. Mech Ageing Dev 1976; 5: 171–191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiou, C.D., Zees, A. Lipofuscins and sclerotial differentiation in phytopathogenic fungi. Mycopathologia 153, 203–208 (2002). https://doi.org/10.1023/A:1014988419357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014988419357

Navigation