Journal of Atmospheric Chemistry

, Volume 41, Issue 3, pp 281–296 | Cite as

Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models

  • Huisheng Bian
  • Michael J. Prather
Article

Abstract

Modeling photochemistry in the stratosphere requires solution of the equationof radiative transfer over an extreme range of wavelengths and atmosphericconditions, from transmission through the Schumann–Runge bands ofO2 in the mesosphere, to multiple scattering from troposphericclouds and aerosols. The complexity and range of conditions makes photolysiscalculations in 3-D chemical transport models computationally expensive. Thisstudy pesents a fast and accurate numerical method, Fast-J2, for calculatingphotolysis rates (J-values) and the deposition of solar flux in stratosphere.Fast-J2 develops an optimized, super-wide 11-bin quadrature for wavelengthsfrom 177 to 291 nm that concatenates with the 7-bin quadrature (291–850nm) already developed for the troposphere as Fast-J. Below 291 nm the effectsof Rayleigh scattering are implemented as a pseudo-absorption, and above 291nm the full multiple-scattering code of Fast-J is used. Fast-J2 calculates themean ultraviolet-visible radiation field for these 18 wavelength binsthroughout the stratosphere, and thus new species and new cross sections canbe readily implemented. In comparison with a standard, high-resolution,multiple-scattering photolysis model, worst-case errors in Fast-J2 do notexceed 5% over a wide range of solar zenith angles, altitudes(0–60 km), latitudes, and seasons where the rates are important inphotochemistry.

photolysis rates stratospheric chemistry chemical transport modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avalonne, L. M. and Prather, M. J., 1997: Tracer-tracer correlations: Three-dimensional model simulations and comparisons to observations, J. Geophys. Res. 102, 19233–19246.Google Scholar
  2. Barth, M. C., Rasch, P. J., Kiehl, J. T., Benkovitz, C. M., and Schwartz, S. E.: 2000, Sulfur chemistry in the NCAR CCM: Description, evaluation, features, and sensitivity to aqueous chemistry, J. Geophys. Res. 105, 1387–1415.Google Scholar
  3. Berntsen, T. K. and Isaksen, I. S. A., 1997: A global three-dimensional chemical transport model for the troposphere 1, model description and CO and ozone results, J. Geophys. Res. 102, 21239–21280.Google Scholar
  4. Bregman, A., Lelieveld, J., van den Broek, M. M. P., Siegmund, P. C., Fischer, H., and Bujok, O., 2000: N2O and O3 relationship in the lowermost stratosphere: a diagnostic for mixing processes as represented by a three-dimensional chemistry-transport model, J. Geophys. Res. 105, 17279–17290.Google Scholar
  5. DeMore, W. B., Sander, S. P., Goldan, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation no. 12, JPL Publication 97-4, Jet Propulsion Laboratory, California Institute of Technology, Pasadena.Google Scholar
  6. Fang, T. M., Wofsy, S. C., and Dalgarno, A., 1974: Opacity distribution functions and absorption in Schumann-Runge bands of molecular-oxygen, Planet. Spa. Sci. 22, 413–425.Google Scholar
  7. Gao, R. S. et al., 2001: J(NO2) at high solar zenith angles in the lower stratosphere, Geophys. Res. Lett. 28, 2405–2408.Google Scholar
  8. Herman, J. R. and Mentall, J. E., 1982: The direct and scattered solar flux within the stratosphere, J. Geophys. Res. 87, 1319–1330.Google Scholar
  9. Kaminski, J.W., McConnell, J. C., and Boville, B. A., 1996: A three-dimensional chemical transport model of the stratosphere: Midlatitude results, J. Geophys. Res. 101, 28731–28751.Google Scholar
  10. Kelley, P., Dickerson, R. R., Luke, W. T., and Kok, G. L., 1995: Rate of NO2 photolysis from the surface to 7.6-km altitude in clear-sky and clouds, Geophys. Res. Lett. 22, 2621–2624.Google Scholar
  11. Kinnison, D. E. et al., 2001: The global modeling initiative assessment model: Application to highspeed civil transport perturbation, J. Geophys. Res. 106, 1693–1712.Google Scholar
  12. Kylling, A., Stamnes, K., Meier, R. R., and Anderson, D. E., 1993: The 200-nm to 300-nm radiation-field in the stratosphere - comparison of models with observation, J. Geophys. Res. 98, 2741–2745.Google Scholar
  13. Lacis, A. A. and Oinas, V., 1991: A description of the correlated kappa-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple-scattering in vertically inhomogeneous atmospheres, J. Geophys. Res. 96, 9027–9063.Google Scholar
  14. Landgraf, J. and Crutzen, P. J., 1998: An efficient method for online calculations of photolysis and heating rates, J. Atmos. Sci. 55, 863–878.Google Scholar
  15. Lefevre, F., Brasseur, G. P., Folkins, I., Smith, A. K., and Simon, P., 1994: Chemistry of the 1991- 1992 stratospheric winter - 3-dimensional model simulations, J. Geophys. Res. 99, 8183–8195.Google Scholar
  16. Meier, R. R., Anderson, G. P., Cantrell, C. A., Hall, L. A., Lean, J., Minschwaner, K., Shetter, R. E., Shettle, E. P., and Stamnes, K., 1997: Actinic radiation in the terrestrial atmosphere, J. Atmos. Solar-Terr. Phys. 59, 2111–2157.Google Scholar
  17. Minschwaner, K. and Siskind, D. E., 1993: A new calculation of nitric-oxide photolysis in the stratosphere, mesosphere, and lower thermosphere, J. Geophys. Res. 98, 20401–20412.Google Scholar
  18. Minschwaner, K., Salawitch, R. J., and McElroy, M. B., 1993: Absorption of solar-radiation by O2-implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2, J. Geophys. Res. 98, 10543–10561.Google Scholar
  19. Minschwaner, K., Thomas, R. J., and Rusch, D. W., 1995a: Scattered ultraviolet radiation in the upper stratosphere, 1, Observations, J. Geophys. Res. 100, 11157–11164.Google Scholar
  20. Minschwaner, K., Anderson, G. P., Hall, L. A., Chetwynd, J. H., Thomas, R. J., Rusch, D. W., Berk, A., and Conant, J. A., 1995b: Scattered ultraviolet-radiation in the upper-stratosphere, 2, models and measurements, J. Geophys. Res. 100, 11165–11171.Google Scholar
  21. Olson, J. et al., 1997: Results from the IPCC photochemical model intercomparison (PhotoComp), J. Geophys. Res. 102, 5979–5991.Google Scholar
  22. Prather, M. J., 1974: Solution of the inhomogeneous Rayleigh scattering atmosphere, Astrophys. J. 192, 787–792.Google Scholar
  23. Prather, M. J. and Remsberg, E. E. (eds), 1993: Chapter 4. GISS Photochemical Model, in Report of the 1992 Stratospheric Models and Measurements Workshop, Satellite Beach, FL, February 1992, NASA Ref. Publ., pp. 76–85.Google Scholar
  24. Rasch, P. J., Boville, B. A., and Brasseur, G. P., 1995: A 3-dimensional general-circulation model with coupled chemistry for the middle atmosphere, J. Geophys. Res. 100, 9041–9071.Google Scholar
  25. Roelofs, G. J., Lelieveld, J., and Vandorland, R., 1997: A three-dimensional chemistry general circulation model simulation of anthropogenically derived ozone in the troposphere and its radiative climate forcing, J. Geophys. Res. 102, 23389–23401.Google Scholar
  26. Sander, S. P., Friedl, R. R., DeMore, W. B., Ravishankara, A. R., Golden, D.M., Kolb, C. E., Kurylo, M. J., Hampson, R. F., Huie, R. E., Molina, M. J., and Moortgat, G. K., 2000: Chemical kinetics and photochemical data for use in stratospheric modeling, supplement to evaluation no. 12 - Update of key reactions and evaluation no. 13, JPL Publication 00-3, Jet Propulsion Laboratory, California Institute of Technology, Pasadena.Google Scholar
  27. Wild, O., Zhu, X., and Prather, M. J., 2000: Fast-J: Accurate simulation of in-and below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem. 37, 245–282.Google Scholar
  28. Zhao, X. P. and Turco, R. P., 1997: Photodissociation parameterization for stratospheric photochemical modeling, J. Geophys. Res. 102, 9447–9459.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Huisheng Bian
    • 1
  • Michael J. Prather
    • 1
  1. 1.Earth System Science DepartmentUniversity of CaliforniaIrvineU.S.A.

Personalised recommendations