Skip to main content
Log in

FTIR Thermal Analysis on Anilinepropylsilica Xerogel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

FTIR thermal analysis was used for a hybrid xerogel, anilinepropylsilica, obtained from three different organic precursor amounts, using HF and NaF as catalysts in the sol–gelprocess. The aniline ring vibrational mode at 1500 cm−1 of attached aniline groups was used to obtain the relative aniline content in the xerogel materials after being submitted to thermal treatment in the temperature range from 100 to 400°C. This technique allowed to evaluate the thermal stability of organic phase. The organic coverage on the surface and the fraction of trapped organic groups in closed pores can also be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Jaroniec, M. Kruk, M. Jaroniec and A. Sayari, J. Phys. Chem. B, 102 (1998) 5503.

    Article  CAS  Google Scholar 

  2. M. Cichna, P. Markl, D. Knopp and R. Niessner, Chem. Mater., 9 (1997) 2640.

    Article  CAS  Google Scholar 

  3. J. J. Kirkland, J. B. Adams, M. A. van Straten and H. A. Claessens, Anal. Chem., 70 (1998) 4344.

    Article  CAS  Google Scholar 

  4. G. Felix and V. Descorps, Chromatographia, 49 (1999) 595.

    Article  CAS  Google Scholar 

  5. Y. Bereznitski and M. Jaroniec, J. Chromatography A, 828 (1998) 51.

    Article  CAS  Google Scholar 

  6. C. J. Brinker and G. W. Scherer, Sol.Gel Science, Academic Press, London 1990.

    Google Scholar 

  7. O. Lev, M. Tsionsky, L. Rabinovich, V. Glazer, S. Sampath, I. Pankratov and J. Gun, Anal. Chem., 67 (1995) 22A.

    CAS  Google Scholar 

  8. M. M. Collinson, Critical Rev. Anal. Chem., 29 (1999) 289.

    Article  CAS  Google Scholar 

  9. L. L. Hench and J. K. West, Chem. Rev., 90 (1990) 33.

    Article  CAS  Google Scholar 

  10. D. A. Loy and K. J. Shea, Chem. Rev., 95 (1995) 1431.

    Article  CAS  Google Scholar 

  11. F. A. Pavan, L. Franken, C. A. Moreira, T. M. H. Costa, E. V. Benvenutti and Y. Gushikem, J. Coll. Interf. Sci., 241 (2001) 143.

    Article  Google Scholar 

  12. G. Cerveau, R. J. P. Corriu and C. Fischmeister-Lepeytre, J. Mater. Chem., 9 (1999) 1149.

    Article  CAS  Google Scholar 

  13. T. N. M. Bernards, M. J. van Bommel and J. A. J. Jansen, J. Sol. Gel Sci. Technol., 13 (1998) 749.

    Article  CAS  Google Scholar 

  14. P. W. J. G. Wijnen, T. P. M. Beelen, K. P. J. Rummens, H. C. P. L. Saeijs, J. W. Haan, L. J. M. van de Ven and R. A. van Santen, J. Coll. Interf. Sci., 145 (1991) 17.

    Article  CAS  Google Scholar 

  15. F. J. Arriagada and K. Osseo-Asare, J. Coll. Interf. Sci., 170 (1995) 8.

    Article  CAS  Google Scholar 

  16. E. Prouzet and T. J. Pinnavaia, Angew. Chem. Int. Ed. Engl., 36 (1997) 516.

    Article  CAS  Google Scholar 

  17. M. Zaharescu, A. Jitianu, A. Brãileanu, V. Bãdescu, G. Pokol, J. Madarász and Cs. Novák, J. Therm. Anal. Cal., 56 (1999) 191.

    Article  CAS  Google Scholar 

  18. T. Eklund, L. Britcher, J. Bäckman and J. B. Rosenholm, J. Therm. Anal. Cal., 58 (1999) 67.

    Article  CAS  Google Scholar 

  19. B. R. Guidotti, E. Herzog, F. Bangerter, W. R. Caseri and U. W. Suter, J. Coll. Interf. Sci., 191 (1997) 209.

    Article  CAS  Google Scholar 

  20. T. I. Desinova, J. Therm. Anal. Cal., 62 (2000) 523.

    Article  Google Scholar 

  21. P. Staszczuk, R. Nasuto and S. Rudy, J. Therm. Anal. Cal., 62 (2000) 461.

    Article  CAS  Google Scholar 

  22. V. M. Bogatyr.ov and M. V. Borysenko, J. Therm. Anal. Cal., 62 (2000) 335.

    Article  CAS  Google Scholar 

  23. T. C. Chang, Y. T. Wang, Y. S. Hong and Y. S. Chiu, Thermochim. Acta, 372 (2001) 165.

    Article  CAS  Google Scholar 

  24. J. Y. Ying, J. B. Benziger and A. Navrotsky, J. Am. Ceram. Soc., 76 (1993) 2561.

    Article  CAS  Google Scholar 

  25. T. M. H. Costa, M. R. Gallas, E. V. Benvenutti and J. A. H. da Jornada, J. Phys. Chem. B, 193 (1999) 4278.

    Article  Google Scholar 

  26. T. M. H. Costa, M. R. Gallas, E. V. Benvenutti and J. A. H. da Jornada, J. Non-Cryst. Solids, 220 (1997) 195.

    Article  CAS  Google Scholar 

  27. F. A. Pavan, S. Leal, T. M. H. Costa, E. V. Benvenutti and Y. Gushikem, Sol.Gel Sci. Technol., 23 (2002) 129.

    Article  CAS  Google Scholar 

  28. J. L. Foschiera, T. M. Pizzolato and E. V. Benvenutti, J. Braz. Chem. Soc., 12 (2001) 159.

    Article  CAS  Google Scholar 

  29. F. A. Pavan, Y. Gushikem, C. C. Moro, T. M. H. Costa and E. V. Benvenutti, submitted to J. Coll. Interf. Sci.

  30. U. Schubert, N. Hüsing and A. Lorenz, Chem. Mater., 7 (1995) 2010.

    Article  CAS  Google Scholar 

  31. H. K. Kim, S.-J. Kang, S.-K. Choi, Y.-H. Min and C.-S. Yoon, Chem. Mater., 11 (1999) 779.

    Article  CAS  Google Scholar 

  32. F. A. Pavan, W. F. de Magalhães, M. A. de Luca, C. C. Moro, T. M. H. Costa and E. V. Benvenutti, submitted to J. Non-Cryst. Solids.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavan, F.A., Gobbi, S.A., Costa, T.M.H. et al. FTIR Thermal Analysis on Anilinepropylsilica Xerogel. Journal of Thermal Analysis and Calorimetry 68, 199–206 (2002). https://doi.org/10.1023/A:1014961332484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014961332484

Navigation