Skip to main content
Log in

Momentum Transfer By A Mountain Meadow Canopy: A Simulation Analysis Based On Massman's (1997) Model

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Using a mountain meadow as a case study it is the objective of the present paper todevelop a simple parameterisation for the within-canopy variation of the phytoelementdrag (Cd) and sheltering (Pm) coefficients required for Massman's model of momentum transfer by vegetation. A constant ratio between Cd and Pm is found to overestimate wind speed in the upper canopy and underestimate it in the lower canopy.Two simple parameterisations of Cd/Pm as a function of the plant area density and the cumulative plant area index are developed, using values optimised by least-squares regression between measured and predicted within-canopy wind speeds. A validation with independently measured data indicates that both parameterisations work reliably for simulating wind speed in the investigated meadow. Model predictions of the normalised zero-plane displacement height and the momentum roughness length fall only partly within the range of values given in literature, which may be explained by the accumulation of plantmatter close to the soil surface specific for the investigated canopies. The seasonal course of the normalised zero-plane displacement height and the momentum roughness length are discussed in terms of the seasonal variation of the amount and density of plant matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albini, F. A.: 1981, 'A Phenomenological Model for Wind Speed and Shear Stress Profiles in Vegetation Cover Layers', J. Appl. Meteorol. 20, 1325–1335.

    Article  Google Scholar 

  • Amiro, B. D.: 1990, 'Drag Coefficients and Turbulence Spectra within Three Boreal Forest Canopies', Boundary-Layer Meteorol. 52, 227–246.

    Article  Google Scholar 

  • Brunet, Y., Finnigan, J. J., and Raupach, M. R.: 1994, 'A Wind Tunnel Study of Air Flow in Waving Wheat: Single-Point Velocity Statistics', Boundary-Layer Meteorol. 70, 95–132.

    Article  Google Scholar 

  • Goudriaan, J. and Van Laar, H. H.: 1994, Modelling Potential Crop Growth Processes, Kluwer Academic Publishers, Dordrecht, 238 pp.

    Book  Google Scholar 

  • Grant, R. H.: 1984, 'The Mutual Interference of Spruce Canopy Structural Elements', Agric. For. Meteorol. 32, 145–156.

    Article  Google Scholar 

  • Landsberg, J. J. and Powell, D. B. B.: 1973, 'Surface Exchange Characteristics of Leaves Subject to Mutual Interference', Agric. Meteorol. 12, 169–184.

    Article  Google Scholar 

  • Landsberg, J. J. and Thom, A. S.: 1971, 'Aerodynamic Properties of a Plant of Complex Structure', Quart. J. Roy. Meteorol. Soc. 97, 565–570.

    Article  Google Scholar 

  • Leuning, R., Kelliher, F.M., De Pury, D. G. G., and Schulze, E. D.: 1995, 'Leaf Nitrogen, Photosynthesis, Conductance and Transpiration: Scaling from Leaves to Canopies', Plant Cell Environ. 18, 1183–1200.

    Article  Google Scholar 

  • Li, Z. J., Miller, D. R., and Lin, J. D.: 1985, 'A First-Order Closure Scheme to Describe Counter-Gradient Momentum Transport in Plant Canopies', Boundary-Layer Meteorol. 33, 77–83.

    Article  Google Scholar 

  • Massman, W. J.: 1987, 'A Comparative Study of Some Mathematical Models of the Mean Wind Structure and Aerodynamic Drag of Plant Canopies', Boundary-Layer Meteorol. 40, 179–197.

    Article  Google Scholar 

  • Massman, W. J.: 1997, 'An Analytical One-Dimensional Model of Momentum Transfer by Vegetation of Arbitrary Structure', Boundary-Layer Meteorol. 83, 407–421.

    Article  Google Scholar 

  • Massman, W. J.: 1999, 'A Model Study of kB–1H for Vegetated Surfaces Using “Localised Near-Field” Lagrangian Theory', J. Hydrol. 223, 27–43.

    Article  Google Scholar 

  • Massman, W. J. and Weil, J. C.: 1999, 'An Analytical One-Dimensional Second-Order Closure Model of Turbulence Statistics and the Lagrangian Time Scale within and above Plant Canopies of Arbitrary Structure', Boundary-Layer Meteorol. 91, 81–107.

    Article  Google Scholar 

  • Meyers, T. and Paw U, K. T.: 1986, 'Testing of a Higher-Order Closure Model for Modelling Airflow within and above Plant Canopies', Boundary-Layer Meteorol. 37, 297–311.

    Article  Google Scholar 

  • Monsi, M. and Saeki, T.: 1953, 'Ñber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion', Japanese J. Bot. 14, 22–52.

    Google Scholar 

  • Ragsdale, C. T.: 2001, Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Management Science, 3rd edn. South-Western College Publishing, Australia, Cincinnati, OH, 794 pp.

    Google Scholar 

  • Raupach, M. R.: 1994, 'Simplified Expressions for Vegetation Roughnes Length and Zero-Plane Displacement as Functions of Canopy Height and Area Index', Boundary-Layer Meteorol. 71, 211–216.

    Article  Google Scholar 

  • Shaw, R. H.: 1977, 'Secondary Wind Speed Maxima Inside Plant Canopies', J. Appl. Meteorol. 16, 514–521.

    Article  Google Scholar 

  • Shaw, R. H. and Pereira, A. R.: 1982, 'Aerodynamic Roughness of a Plant Canopy: A Numerical Experiment', Agric. Meteorol. 26, 51–65.

    Article  Google Scholar 

  • Su, Z., Schmugge, T., Kustas, W. P., and Massman, W. J.: 2001, 'An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere', J. Appl. Meteorol., in press.

  • Tappeiner, U. and Cernusca, A.: 1998, 'Model Simulation of Spatial Distribution of Photosynthesis in Structurally Differing Plant Communities in the Central Caucasus', Ecol. Model. 113, 201–223.

    Article  Google Scholar 

  • Thom, A. S.: 1968, 'The Exchange of Momentum, Mass and Heat between an Artificial Leaf and the Airflow in a Wind-Tunnel', Quart. J. Roy. Meteorol. Soc. 94, 44–55.

    Article  Google Scholar 

  • Thom, A. S.: 1971, 'Momentum Absorption by Vegetation', Quart. J. Roy. Meteorol. Soc. 97, 414–428.

    Article  Google Scholar 

  • Watanabe, T. and Kondo, J.: 1990, 'The Influence of Canopy Structure and Density upon the Mixing Length within and above Vegetation', J. Meteorol. Soc. Japan 68, 227–235.

    Google Scholar 

  • Wilson, N. R. and Shaw, R. H.: 1977, 'A Higher-Order Closure Model for Canopy Flow', J. Appl. Meteorol. 16, 1197–1205.

    Article  Google Scholar 

  • Wohlfahrt, G., Bahn, M., Tappeiner, U., and Cernusca, A.: 2000, 'A Model of Whole Plant Gas Exchange for Herbaceous Species from Mountain Grassland Sites Differing in Land Use', Ecol. Model. 125, 173–201.

    Article  Google Scholar 

  • Wohlfahrt, G., Bahn, M., Tappeiner, U., and Cernusca, A.: 2001, 'A Multi-Component,Multi-Species Model of Vegetation-Atmosphere CO2 and Energy Exchange for Mountain Grasslands', Agric. For. Meteorol. 106, 261–287.

    Article  Google Scholar 

  • Zeng, P. and Takahashi, H.: 2000, 'A First-Order Closure Model for theWind Flow within and above Vegetation Canopies', Agric. For. Meteorol. 103, 310–313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wohlfahrt, G., Cernusca, A. Momentum Transfer By A Mountain Meadow Canopy: A Simulation Analysis Based On Massman's (1997) Model. Boundary-Layer Meteorology 103, 391–407 (2002). https://doi.org/10.1023/A:1014960912763

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014960912763

Navigation