Skip to main content
Log in

Phonon Band Filling and Photon Emission by Phonons

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Phonon generation by electrons is supplied in n-type Si crystals in electric fields E≤100 kV/cm at the lattice temperature of 80 K employing the ensemble Monte Carlo technique. Electron transfer between equivalent energy valleys is accounted for the g-type- and f-type phonon absorption and emission. Acoustic phonons are accounted for the quasi-elastic scattering of electrons within the energy valleys. Excess phonon number is determined using numerical data on phonon generation rate and experimental values of phonon lifetimes. The feasibility of stimulated emission of infrared-range photons due to direct optical transitions between the phonon bands is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Conwell. High Field Transport in Semiconductors (Academic Press, New York, London), 1967.

    Google Scholar 

  2. J. C. Vaissiere, M. Fadel, L. Hlou, and P. Kocevar, Phys. Rev., B 46, 13082 (1992).

    Google Scholar 

  3. P. Bordone, C. Jacoboni, P. Lugli, L. Reggiani, and P. Kocevar, Physica 134B, 155 (1985); P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar, S. M. Goodnick, Phys. Rev., B 39, 7852; 7866 (1989).

    Google Scholar 

  4. R. Mickevičius and A. Reklaitis, Sol. St. Commun. 64, 1305 (1987).

    Google Scholar 

  5. B. Szigeti. Proc. Roy. Soc. London, 252A, 217 (1959); Proc. Roy. Soc. London, 258A, 377 (1960).

    Google Scholar 

  6. M. Ikezawa, M. Ishigame. J. Phys. Soc. Jap., 50, 3734 (1981).

    Google Scholar 

  7. R. Brazis and F. Keilmann. Solid State Commun. 70, 1109 (1989).

    Google Scholar 

  8. R. Brazis, IR Phys. Technol., 36, 45 (1995); Lithuanian J. Phys., 35, 519 (1995).

    Google Scholar 

  9. D. von der Linde, J. Kuhl, H. Klingenberg, Phys. Rev. Lett., v. 44, 1505 (1980).

    Google Scholar 

  10. B. K. Ridley. Quantum Processes in Semiconductors, Clarendon, Oxford, 1982.

    Google Scholar 

  11. G. Nilsson, S. Nelin, Phys. Rev., B 3, 384 (1971); Phys. Rev., B 6, 3777 (1972).

    Google Scholar 

  12. W. Fawcett, A.D. Boardmann, and G. Swain, J. Phys. Chem. Sol., 31, 1963 (1970).

    Google Scholar 

  13. R. Brunetti, C. Jacoboni, T. Nava, L. Reggiani, G. Bosman, R. J. J. Zijlstra, J. Appl. Phys. 52, 6713 (1981).

    Google Scholar 

  14. M. Urban, Ch. Nieswand, M. R. Siegrist, F. Keilmann, J. Appl. Phys, 77, 981 (1995).

    Google Scholar 

  15. H. Ibach, H. Lűth, Solid-State Physics. An Introduction to Principles of Materials Science, Springer-Verlag, Berlin, Heidelberg, 1995.

    Google Scholar 

  16. T. Kunikiyo, M. Takenaka, Y. Kamakura, M. Yamaji, H. Mizuno, M. Morifuji, K. Taniguchi, and C. Hamaguchi. J. Appl. Phys., 75, 297 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazis, R., Raguotis, R. Phonon Band Filling and Photon Emission by Phonons. International Journal of Infrared and Millimeter Waves 22, 845–852 (2001). https://doi.org/10.1023/A:1014958112976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014958112976

Navigation