Skip to main content
Log in

On the Noncommutative Geometry of Twisted Spheres

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe noncommutative geometric aspects of twisted deformations, in particular of the spheres of Connes and Landi and of Connes and Dubois Violette, by using the differential and integral calculus on these spaces that is covariant under the action of their corresponding quantum symmetry groups. We start from multiparametric deformations of the orthogonal groups and related planes and spheres. We show that only in the twisted limit of these multiparametric deformations the covariant calculus on the plane gives, by a quotient procedure, a meaningful calculus on the sphere. In this calculus, the external algebra has the same dimension as the classical one. We develop the Haar functional on spheres and use it to define an integral of forms. In the twisted limit (differently from the general multiparametric case), the Haar functional is a trace and we thus obtain a cycle on the algebra. Moreover, we explicitly construct the *-Hodge operator on the space of forms on the plane and then by quotient on the sphere. We apply our results to even spheres and compute the Chern–Connes pairing between the character of this cycle, i.e. a cyclic 2n-cocycle, and the instanton projector defined in math.QA/0107070.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschieri, P. and Castellani, L.: An Introduction to noncommutative differential geometry on quantum groups, Internat. J. Modern Phys. A 8 (1993), 1667 [arXiv:hep-th/9207084].

    Google Scholar 

  2. Aschieri, P. and Castellani, L.: Bicovariant calculus on twisted ISO(N), quantum Poincaré group and quantum Minkowski space, Internat. J. Modern Phys. A 11 (1996), 4513 [q-alg/9601006].

    Google Scholar 

  3. Aschieri, P., Castellani, L. and Scarfone, A. M.: Quantum orthogonal planes: ISO q,r(n + 1, n- 1) and SO q,r(n + 1,n- 1) bicovariant calculi, Eur. Phys. J. C 7 (1999), 159 [q-alg/9709032].

    Google Scholar 

  4. Bonechi, F., Ciccoli, N. and Tarlini, M.: Noncommutative instantons on the 4-sphere from quantum groups, math.qa/0012236.

  5. Carow-Watamura, U., Schlieker, M. and Watamura, S.: SO-q(N) covariant differential calculus on quantum space and quantum deformation of Schrödinger equation, Z. Phys. C 49 (1991), 439.

    Google Scholar 

  6. Connes, A.: Noncommutative Geometry, Academic Press, New York, 1994.

    Google Scholar 

  7. Connes, A. and Dubois-Violette, M.:Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples, math.QA/0107070.

  8. Connes, A. and Landi, G.: Noncommutative manifolds: The instanton algebra and isospectral deformations, Comm. Math. Phys. 221 (2001), 141 [math.qa/0011194].

    Google Scholar 

  9. Dobrev, V. K.: Canonical q deformations of noncompact Lie (super)algebras, J. Phys. A 26 (1993), 1317.

    Google Scholar 

  10. Faddeev, L. D., Reshetikhin, N. Y. and Takhtajan, L. A.: Quantization of Lie groups and Lie algebras, Lengingrad Math. J. 1 (1990), 193 [Algebra Anal. 1 (1990), 178].

    Google Scholar 

  11. Fiore, G.: Quantum groups SOq(N), Spq(n) have q-determinants, too, J. Phys. A 27 (1994), 3795.

    Google Scholar 

  12. Gracia-Bondia, J. M., Varilly, J. C. and Figueroa, H.: Elements of Noncommutative Geometry, Birkhaüser, Boston, 2001.

    Google Scholar 

  13. Jurco, B.: Differential calculus on quantized simple Lie groups, Lett. Math. Phys. 22 (1991), 177; Carow-Watamura, U., Schlieker, M., Watamura, S. and Weich, W.: Bicovariant and differential calculus on quantum groups SUq(n) and SOq(n), Comm. Math. Phys. 142 (1991), 605; Jurco, B.: Differential calculus on quantum groups: Constructive procedure, In: L. Castellani, and J. Wess (eds), Proc. International School of Physics 'Enrico Fermi', Varenna 1994, Course CXXVII: Quantum Groups and their Application in Physics, IOS/Ohmsha Press, 1996 [hep-th/9408179].

    Google Scholar 

  14. Loday, J. L.: Cyclic Homology. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  15. Masuda, T., Nagakami, Y. and Watanabe, J.: Noncommutative differential geometry on the quantum two sphere of Podle\(s`\). I; an algebraic viewpoint, K-Theory 5 (1991), 151.

    Google Scholar 

  16. Ogievetsky, O. and Zumino, B.: Reality in the differential calculus on q Euclidean spaces, Lett. Math. Phys. 25 (1992), 121 [hep-th/9205003].

    Google Scholar 

  17. Podle\(s`\), P.: Quantum Spheres, Lett. Math. Phys. 14 (1987), 193.

    Google Scholar 

  18. Pusz, W. and Woronowicz, S. L.: Twisted second quantization, Rep. Math. Phys. 27 (1990), 231; Wess, J. and Zumino, B.: Covariant differential calculus on the quantum hyperplane, Nuclear Phys. Proc. Suppl. 18B (1991), 302.

    Google Scholar 

  19. Reshetikhin, N.: Multiparametric quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), 331; Schirrmacher, A.: Multiparameter R matrices and its quantum groups, J. Phys. A 24 (1991), L1249.

    Google Scholar 

  20. Sitarz, A.: Twists and spectral triples for isospectral deformations, math.QA/0102074

  21. Steinacker, H.: Integration on quantum Euclidean space and sphere in N-dimensions, J. Math. Phys. 37 (1996), 7438 [q-alg/9506020].

    Google Scholar 

  22. Twietmeyer, E.: Real forms of Uq(g), Lett. Math. Phys. 24 (1992), 49; Aschieri, P.: Real forms of quantum orthogonal groups, q-Lorentz groups in any dimension, Lett. Math. Phys. 49 (1999), 1 [math.qa/9805120].

    Google Scholar 

  23. Varilly, J. C.: Quantum symmetry groups of noncommutative spheres, Comm. Math. Phys. 221 (2001), 511 [math.qa/0102065].

    Google Scholar 

  24. Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschieri, P., Bonechi, F. On the Noncommutative Geometry of Twisted Spheres. Letters in Mathematical Physics 59, 133–156 (2002). https://doi.org/10.1023/A:1014942018467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014942018467

Navigation