Skip to main content
Log in

Characterization of Iron Species in Ex-Framework FeZSM-5 by Electrochemical Methods

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Solid state electrochemistry is described as a method to characterize iron species in the different stages of the preparation of ex-framework FeZSM-5. The ex-framework method comprises the hydrothermal synthesis of isomorphously substituted FeZSM-5, followed by calcination at 823 K and steam treatment (300 mbar H2O in N2) at 873 K. Incorporation of FeZSM-5 samples in graphite-polyester composite (GPC) electrodes and identification of the electrochemical response provides information on the structural environment and oxidation state of electroactive iron species in the zeolite. 57Fe Mössbauer spectroscopy and TEM analysis were additionally used to interpret the electrochemical responses. Tetrahedral iron atoms in framework positions were the only species observed in the as-synthesized material. After calcination, also isolated extra-framework iron ions and oligonuclear iron--oxo complexes were identified, as well as a minor amount of FeOx nano-particles. The steaming procedure leads to extensive formation of the FeOx nano-particles of 1-2 nm in size, which were also identified by TEM. Both oxidative as well as reductive dissolution processes have been observed for the nano-particles, suggesting the presence of both Fe(II) and Fe(III) oxidation states in the steamed FeZSM-5, which is confirmed by Mössbauer spectroscopy. Tetrahedrally coordinated iron atoms in framework positions, as well as the isolated extra-framework iron ions and oligonuclear iron-oxo complexes in octahedral positions, yield electron-transfer processes that approach that of strongly electrode-attached species with distinctive variations of the electrochemical parameters on the pH and the potential scan rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Venuto, Microporous Mater. 2 (1994) 297.

    Google Scholar 

  2. Md. Uddin, T. Komatsu and T. Kashima, J. Catal. 150 (1994) 439.

    Google Scholar 

  3. G.I. Panov, A.K. Uriarte, M.A. Rodkin and V.I. Sobolev, Catal. Today 41 (1998) 365.

    Google Scholar 

  4. K.A. Dubkov, V.I. Sobolev and G.I. Panov, Kinet. Catal. 39 (1998) 72.

    Google Scholar 

  5. X. Feng and W.K. Hall, Catal. Lett. 41 (1996) 45.

    Google Scholar 

  6. H.-Y. Chen and W.M.H. Sachtler, Catal. Today 42 (1998) 73.

    Google Scholar 

  7. M. Kögel, R. Mönnig, W. Schwieger, A. Tissler and T. Turek, J. Catal. 182 (1999) 470.

    Google Scholar 

  8. A.-Z. Ma and W. Grünert, Chem. Commun. (1999) 71.

  9. R.Q. Long and R.T. Yang, J. Catal. 188 (1999) 332.

    Google Scholar 

  10. F. Kapteijn, G. Marbán, J. Rodríguez-Mirasol and J.A. Moulijn, J. Catal. 167 (1997) 256.

    Google Scholar 

  11. C. Pophal, T. Yogo, K. Yamada and K. Segawa, Appl. Catal. B 16 (1998) 177.

    Google Scholar 

  12. G. Centi and F. Vazanna, Catal. Today 53 (1999) 683.

    Google Scholar 

  13. M. Mauvezin, G. Delahay, F. Kißlich, B. Coq and S. Kieger, Catal. Lett. 62 (1999) 41.

    Google Scholar 

  14. R.Q. Long and R.T. Yang, Chem. Commun. (2000) 1651.

  15. R. Joyner and M. Stockenhuber, J. Phys. Chem. B 103 (1999) 5963.

    Google Scholar 

  16. M. Rauscher, K. Kesore, R. Mönnig, W. Schwieger, A. Tißler and T. Turek, Appl. Catal. A 184 (1999) 249.

    Google Scholar 

  17. P. Marturano, L. Drozdová, A. Kogelbauer and R. Prins, J. Catal. 192 (2000) 236.

    Google Scholar 

  18. A.A. Battiston, J.H. Bitter and D.C. Koningsberger, Catal. Lett. 66 (2000) 75.

    Google Scholar 

  19. A. Ribera, I.W.C.E. Arends, S. de Vries, J. Pérez-Ramírez and R.A. Sheldon, J. Catal. 195 (2000) 287.

    Google Scholar 

  20. R.Q. Long and R.T. Yang, J. Catal. 194 (2000) 80.

    Google Scholar 

  21. E.M. El-Malki, R.A. van Santen and W.M.H. Sachtler, J. Phys. Chem. B 103 (1999) 4611.

    Google Scholar 

  22. H-Y. Chen, X. Wang and W.M.H. Satchler, Phys. Chem. Chem. Phys. 2 (2000) 3083.

    Google Scholar 

  23. E.M. El-Malki, R.A. van Santen and W.M.H. Sachtler, J. Catal. 196 (2000) 212.

    Google Scholar 

  24. J. Pérez-Ramírez, F. Kapteijn, G. Mul and J.A. Moulijn, Chem. Commun. 694 (2001).

  25. J. Pérez-Ramírez, F. Kapteijn, G. Mul and J.A. Moulijn, Appl. Catal. B (2001) in press.

  26. S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini and G. Tozzola, J. Catal. 158 (1996) 486.

    Google Scholar 

  27. P. Fejes, J.B. Nagy, J. Halász and A. Oszkó, Appl. Catal. A 175 (1998) 89.

    Google Scholar 

  28. J. Pérez-Ramírez, G. Mul, F. Kapteijn, J.A. Moulijn, A.R. Overweg, A. Doménech, A. Ribera and I.W.C.E. Arends (2001) submitted to J. Catal.

  29. F. Scholz and B. Lange, Trends. Anal. Chem. 11 (1992) 359.

    Google Scholar 

  30. F. Scholz and B. Meyer, Chem. Soc. Rev. 23 (1994) 341.

    Google Scholar 

  31. P.G. Bruce, Solid State Electrochemistry (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  32. F. Scholz and B. Meyer, in: Electroanalytical Chemistry, A Series of Advances, eds. A.J. Bard and I. Rubinstein, Vol. 20 (Marcel Dekker, New York, 1998) p. 1.

    Google Scholar 

  33. P.K. Dutta and M. Ledney, Progr. Inorg. Chem. 44 (1997) 209.

    Google Scholar 

  34. M.D. Baker, C. Senaratne and J. Zhang, J. Chem. Soc. Faraday Trans. 88 (1992) 3187.

    Google Scholar 

  35. M.D. Baker, C. Senaratne and J. Zhang, J. Phys. Chem. 98 (1994) 1668.

    Google Scholar 

  36. M.D. Baker, J. Phys. Chem. 99 (1995) 12367.

    Google Scholar 

  37. J.-W. Li and G. Calzaferri, J. Electroanal. Chem. 377 (1994) 163.

    Google Scholar 

  38. J.-W. Li, K. Pfanner and G. Calzaferri, J. Phys. Chem. 99 (1995) 2119.

    Google Scholar 

  39. F. Bedioui, E. De Boysson, J. Devynck and K.J. Balkus, J. Electroanal. Chem. 315 (1991) 313.

    Google Scholar 

  40. F. Bedioui, E. De Boysson, J. Devynck and K.J. Balkus, J. Chem. Soc. Faraday Trans. 87 (1991) 3831.

    Google Scholar 

  41. L. Gaillon, N. Sajot, F. Bedioui, J. Devynck and K.J. Balkus, J. Electroanal. Chem. 345 (1993) 157.

    Google Scholar 

  42. F. Bedioui, L. Roué, E. Briot, J. Devynck, S.L. Bell and K.J. Balkus, J. Electroanal. Chem. 373 (1994) 19.

    Google Scholar 

  43. G. Calzaferri, M. Lanz and J.-W. Li, Chem. Commun. (1995) 1313.

  44. N.J. Turro and M. Garcia-Garibay, in: Photochemistry in Organized Media, ed. V. Ramamurthy (VCH, New York, 1991) p. 1.

    Google Scholar 

  45. A. Doménech, J. Pérez-Ramírez, A. Ribera, G. Mul, F. Kapteijn and I.W.C.E. Arends, J. Electroanal. Chem. (2001) in press.

  46. C.A. Bessel and D.R. Rolison, J. Phys. Chem. B 101 (1997) 1148.

    Google Scholar 

  47. R.S. Nicholson and I. Shain, Anal. Chem. 36 (1964) 706.

    Google Scholar 

  48. G. Ginzburg, Anal. Chem. 50 (1978) 375.

    Google Scholar 

  49. B.R. Eggins and N.H. Smith, Anal. Chem. 51 (1979) 2282.

    Google Scholar 

  50. A.J. Bard and L.R. Faulkner, Electrochemical Methods (John Wiley & Sons, New York, 1980).

    Google Scholar 

  51. T. Grygar, J. Electroanal. Chem. 405 (1996) 117.

    Google Scholar 

  52. A. Meagher, V. Nair and R. Szostak, Zeolites 8 (1988) 3.

    Google Scholar 

  53. R.L. Garten, W.N. Delgass and M. Boudart, J. Catal. 19 (1970) 90.

    Google Scholar 

  54. P. Fejes, J.B. Nagy, K. Lázár and J. Halász, Appl. Catal. A. 190 (2000) 117.

    Google Scholar 

  55. L.J. Lobree, I.-C. Hwang, J.A. Reimer, A.T. Bell, J. Catal. 186 (2001) 242.

    Google Scholar 

  56. N. Venkatathri, M.P. Vinod, K. Vijayamohanan and S. Sivasanker, J. Chem. Soc. Faraday Trans. 92 (1996) 473.

    Google Scholar 

  57. S. de Castro Martins, A. Tuel and Y. Ben Taârit, Stud. Surf. Sci. Catal. 84 (1994) 501.

    Google Scholar 

  58. F. Geobaldo, S. Bordiga, A. Zecchina, E. Gianello, G. Leofanti and G. Petrini, Catal. Lett. 16 (1992) 109.

    Google Scholar 

  59. A.V. Arbuznikov and G.M. Zhidomirov, Catal. Lett. 40 (1996) 17.

    Google Scholar 

  60. C.P. Horwitz, S.E. Creager and R.W. Murray, Inorg. Chem. 1006 (1990) 29.

    Google Scholar 

  61. A. Doménech, P. Formentín, H. García and M.J. Sabater, 2001 submitted to J. Phys. Chem. B.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doménech, A., Pérez-Ramirez, J., Ribera, A. et al. Characterization of Iron Species in Ex-Framework FeZSM-5 by Electrochemical Methods. Catalysis Letters 78, 303–312 (2002). https://doi.org/10.1023/A:1014937424671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014937424671

Navigation