Skip to main content
Log in

Geometric Integrability of the Camassa–Holm Equation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is observed that the Camassa–Holm equation describes pseudo-spherical surfaces and that therefore, its integrability properties can be studied by geometrical means. An sl(2, R)-valued linear problem whose integrability condition is the Camassa–Holm equation is presented, a ‘Miura transform’ and a ‘modified Camassa–Holm equation’ are introduced, and conservation laws for the Camassa–Holm equation are then directly constructed. Finally, it is pointed out that this equation possesses a nonlocal symmetry, and its flow is explicitly computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I. M.: The Vessiot Handbook. Formal geometry and mathematical physics technical report, Utah State University, 2000. Website: http://www.math.usu.edu/~fg_mp/

  2. Beals, R., Sattinger, D. H. and Szmigielski, J: Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math. 140 (1998), 190–206.

    Google Scholar 

  3. Bluman, G. W. and Kumei, S.: Symmetry-based algorithms to relate partial differential equations. II. Linearization by nonlocal symmetries, European J. Appl. Math. 1(1) (1990), 217–223.

    Google Scholar 

  4. Camassa, R. and Holm, D. D.: An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71(11) (1993), 1661–1664.

    Google Scholar 

  5. Camassa, R., Holm, D. D. and Hyman, J. M.: A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1–33.

    Google Scholar 

  6. Camassa, R. and Zenchuk, A. I.: On the initial value problem for a completely integrable shallow water wave equation, Phys. Lett. A 281 (2001), 26–33.

    Google Scholar 

  7. Chern, S. S. and Tenenblat, K.: Pseudo-spherical surfaces and evolution equations, Stud. Appl. Math. 74 (1986), 55–83.

    Google Scholar 

  8. Constantin, A.: The Hamiltonian structure of the Camassa-Holm equation, Exposition. Math. 15(1) (1997), 53–85.

    Google Scholar 

  9. Fisher, M. and Schiff, J.: The Camassa Holm equation: conserved quantities and the initial value problem, Phys. Lett. A 259(5) (1999), 371–376.

    Google Scholar 

  10. Fokas, A. S.: On a class of physically important integrable equations, Physica D 87 (1995), 145–150.

    Google Scholar 

  11. Fokas, A. S., Olver, P. J. and Rosenau, P.: A plethora of integrable bi-Hamiltonian equations, In: A. S. Fokas and I. M. Gel'fand (eds), Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, Prog. Nonlinear Differential Equations 26, Birkhauser, Boston, 1996, pp. 93–101.

    Google Scholar 

  12. Fuchssteiner, B. and Fokas, A. S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D 4 (1981), 47–66.

    Google Scholar 

  13. Fuchssteiner, B.: The Lie algebra structure of degenerate hamiltonian and bi-hamiltonian systems, Progr. Theoret. Phys. 68 (1982), 1082–1104.

    Google Scholar 

  14. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Physica D 95 (1996), 229–243.

    Google Scholar 

  15. Galas, F.: New nonlocal symmetries with pseudopotentials, J. Phys. A 25(15) (1992), L981–L986.

    Google Scholar 

  16. Hunter, J. K. and Saxton, R.: Dynamics of director fields, SIAM J. Appl. Math. 51(6) (1991), 1498–1521.

    Google Scholar 

  17. Kraenkel, R. A. and Zenchuk, A.: Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions, J. Phys. A: Math. Gen. 32 (1999), 4733–4747.

    Google Scholar 

  18. Krasil'shchik, I. S. and Vinogradov, A. M. ( eds): Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Transl. Math. Monogr. 182, Amer. Math. Soc., Providence, 1999.

    Google Scholar 

  19. Leo, M., Leo, R., Soliani, G. and Tempesta, P.: On the relation between Lie symmetries and prolongation structures of nonlinear field equations—non-local symmetries, Progr. Theoret. Phys. 105(1) (2001), 77–97.

    Google Scholar 

  20. Olver, P. J. and Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (1996), 1900–1906.

    Google Scholar 

  21. Reyes, E. G.: Some geometric aspects of integrability of differential equations in two independent variables, Acta Appl. Math. 64(2/3) (2000), 75–109.

    Google Scholar 

  22. Reyes, E. G.: On geometrically integrable equations and hierarchies of pseudo-spherical type. In: J. A. Leslie and T. Robart (eds), Proc. NSF-CBMS Conference on the Geometrical Study of Differential Equations, Contemp. Math., Amer. Math. Soc., 2001.

  23. Reyes, E. G.: The soliton content of the Camassa-Holm and Hunter-Saxton equations. In: Proc. Fourth International Conference on Symmetry in Nonlinear Mathematical Physics, Proc. Inst. Math. NAS Ukraine, 2001.

  24. Schiff, J.: Zero curvature formulations of dual hierarchies, J. Math. Phys. 37(4) (1996), 1928–1938.

    Google Scholar 

  25. Schiff, J.: The Camassa-Holm equation: a loop group approach, Phys. D 121(1-2) (1998), 24–43.

    Google Scholar 

  26. Schiff, J.: Symmetries of KdV and loop groups, Preprint, solv-int/9606004 Los Alamos arXiv.org e-Print archive.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, E.G. Geometric Integrability of the Camassa–Holm Equation. Letters in Mathematical Physics 59, 117–131 (2002). https://doi.org/10.1023/A:1014933316169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014933316169

Navigation