Skip to main content
Log in

A New Methodology for the Analysis of Periodic Systems

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new numerical-analytical method for the combined global-localanalysis of nonlinear periodic systems referred to as an ExpandedPoint Mapping (EPM) is presented. This methodology combines thecell to cell mapping and point mapping methods toinvestigate the basins of attraction and stability characteristics ofequilibrium points and periodic solutions of nonlinear periodicsystems. The proposed method is applicable to multi-degrees-of-freedomsystems, multi-parameter systems, and allows analytical studies oflocal stability characteristics of steady state solutions. Inaddition, the EPM approach allows the study of stabilitycharacteristics as function of system parameters to obtain analyticalconditions for bifurcation. In the paper, the theoretical basis forthe EPM method is formulated and a procedure for the analysis ofnonlinear dynamical systems is presented. Analysis of a pendulum witha periodically excited support in the plane is used to illustrate themethod. The results demonstrate the efficiency and accuracy of theproposed approach in analyzing nonlinear periodic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernussou, J., Point Mapping Stability, Pergamon, Oxford, 1977.

    Google Scholar 

  2. Bogoliubov, N. N. and Mitropolsky, Y. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Hindustan Publishing, Delhi, 1961.

    Google Scholar 

  3. Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA, 1964.

    Google Scholar 

  4. Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 3rd edition, Academic Press, New York, 1971.

    Google Scholar 

  5. Flashner, H., 'A point mapping study of dynamical systems', Ph.D. Dissertation, University of California, Berkeley, CA, 1979.

    Google Scholar 

  6. Flashner, H. and Guttalu, R. S., 'Analysis of nonlinear nonautonomous systems by truncated point mappings', International Journal of Non-Linear Mechanics 24, 1989, 327-344.

    Google Scholar 

  7. Flashner, H. and Hsu, C. S., 'A study of nonlinear periodic systems via the point mapping method', International Journal for Numerical Methods in Engineering 19, 1983, 185-215.

    Google Scholar 

  8. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar 

  9. Guder, R., Dellnitz, M., and Kreuzer, E., 'An adaptive method for the approximation of the generalized cell mapping', Chaos, Solitons and Fractals 8(4), 1997, 525-534.

    Google Scholar 

  10. Guder, R. and Kreuzer, E., 'Control of an adaptive refinement technique of generalized cell mapping by system dynamics', Nonlinear Dynamics 20(1), 1999, 21-32.

    Google Scholar 

  11. Guttalu, R. S., 'On point mapping methods for studying nonlinear dynamical systems', Ph.D. Dissertation, University of California, Berkeley, CA, 1981.

    Google Scholar 

  12. Guttalu, R. S. and Flashner, H., 'Periodic solutions of nonlinear autonomous systems by approximate point mappings', Journal of Sound and Vibration 129, 1989, 291-311.

    Google Scholar 

  13. Guttalu, R. S. and Flashner, H., 'A numerical study of the dynamics of a pendulum with a moving support', ASME Journal of Applied Mechanics 192, 1994, 293-311.

    Google Scholar 

  14. Guttalu, R. S. and Flashner, H., 'Analysis of bifurcation and stability of periodic systems using truncated point mappings', in Nonlinear Dynamics: New Theoretical and Applied Results, Akademie Verlag, Berlin, 1995, pp. 230-255.

    Google Scholar 

  15. Hale, J. K., Oscillations in Non-Linear Systems, McGraw-Hill, New York, 1963.

    Google Scholar 

  16. Hayashi, C., Nonlinear Oscillations in Physical Systems, McGraw-Hill, New York, 1964.

    Google Scholar 

  17. Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962.

    Google Scholar 

  18. Hsu, C. S., 'A theory of cell-to-cell mapping dynamical systems', ASME Journal of Applied Mechanics 47, 1980, 931-939.

    Google Scholar 

  19. Hsu, C. S., Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems, Springer-Verlag, New York, 1987.

    Google Scholar 

  20. Hsu, C. S. and Chiu, H. M., 'A cell mapping method for nonlinear deterministic and stochastic systems, Part I. The method of analysis', ASME Journal of Applied Mechanics 53, 1986, 695-701.

    Google Scholar 

  21. Hsu, C. S. and Guttalu, R. S., 'An unravelling algorithm for global analysis of dynamical systems: An application of cell-to-cell mappings', ASME Journal of Applied Mechanics 47, 1986, 940-948.

    Google Scholar 

  22. Jury, E. I., Inners and Stability of Dynamic Systems, Wiley, New York, 1974.

    Google Scholar 

  23. Kauderer, H., Nichtlineare Mechanik, Springer-Verlag, Berlin, 1958.

    Google Scholar 

  24. Lichtenberg, A. J. and Lieberman, M. A., Regular and Stochastic Motions, Springer-Verlag, New York, 1983.

    Google Scholar 

  25. Moon, F. C., Chaotic Vibrations, Wiley, New York, 1987.

    Google Scholar 

  26. Nayfeh, A. H., Perturbation Methods, Wiley, New York, 1973.

    Google Scholar 

  27. Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1979.

    Google Scholar 

  28. Poincaré, H., Les Méthodes Nouvelles de la Mécanique Céleste, 3 Volumes, Gauthier-Villar, Paris, 1899.

    Google Scholar 

  29. Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, Pitman, London, 1978.

    Google Scholar 

  30. Thompson, J. M. T. and Stewart, H. B., Nonlinear Dynamics and Chaos, Wiley, Chichester, 1986.

    Google Scholar 

  31. Tongue, B. H., 'On obtaining global nonlinear system characteristics through interpolated cell mapping', Physica 28D(3), 1987, 401-408.

    Google Scholar 

  32. Tongue, B. H., 'A multiple map strategy for interpolated mapping', International Journal of Non-Linear Mechanics 25(2/3), 1990, 177-186.

    Google Scholar 

  33. Tongue, B. H. and Gu, K., 'A higher order method of interpolated cell mapping', Journal of Sound and Vibration 125(1), 19888, 169-179.

    Google Scholar 

  34. Tongue, B. H. and Gu, K., 'Interpolated cell mapping of dynamical systems', ASME Journal of Applied Mechanics 55(2) 1988, 461-466.

    Google Scholar 

  35. Tongue, B. H. and Gu, K., 'A theoretical basis for interpolated cell mapping', SIAM Journal of Applied Mathematics 48(5), 1988, 1206-1214.

    Google Scholar 

  36. Urabe, M., Non-linear Autonomous Oscillations, Academic Press, New York, 1967.

    Google Scholar 

  37. van der Spek, J. A. W., de Hoon, C. A. L., de Kraker, A., and van Campen, D. H., 'Parameter variation methods for cell mapping', Nonlinear Dynamics 7(3), 1995, 273-284.

    Google Scholar 

  38. Vidyasagar, M., Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1978.

    Google Scholar 

  39. Yakubovich, V. A. and Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients, Vols. 1 and 2, Wiley, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golat, M., Flashner, H. A New Methodology for the Analysis of Periodic Systems. Nonlinear Dynamics 28, 29–51 (2002). https://doi.org/10.1023/A:1014930903197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014930903197

Navigation