Skip to main content
Log in

Numerical Study of Dense Fluid Flow in Narrow Pores

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Unsteady-state dense flows in narrow slitlike pores that result from pulse perturbations of the initial steady state are analyzed for the case of argon flow in a carbon pore whose walls have microasperities. The flow is modeled using a new microhydrodynamic approach in which the dissipation coefficients are calculated according to the lattice gas model. This method enables one to analyze the molecular concentration and velocity distributions as functions of the distance from the pore wall. It is shown how a local flow pattern is affected by microasperities, which reduce the pore width. The evolution of the concentration and longitudinal flow velocity fields is traced from the instant of perturbation until the establishment of a quasi-steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Deryagin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily (Surface Forces), Moscow: Nauka, 1985.

    Google Scholar 

  2. Timofeev, D.P., Kinetika adsorbtsii (Adsorption Kinetics), Moscow: Akad. Nauk SSSR, 1962.

    Google Scholar 

  3. Heifets, L.I. and Neimark, A.V., Mnogofaznye protsessy v poristykh sredakh (Multiphase Processes in Porous Media), Moscow: Khimiya, 1982.

    Google Scholar 

  4. Carman, P.C., Flow of Gases through Porous Media, London: Butterworths, 1956.

    Google Scholar 

  5. Satterfield, Ch.N., Mass Transfer in Heterogeneous Catalysis, Cambridge: MIT Press, 1970. Translated under the title Massoperedacha v geterogennom katalize, Moscow: Khimiya, 1976.

    Google Scholar 

  6. Mason, E. and Malinauskas, A., Transport in Porous Media: The Dusty Gas Model, Amsterdam: Elsevier, 1983. Translated under the title Perenos v poristykh sredakh: model' zapylennogo gaza, Moscow: Mir, 1986.

    Google Scholar 

  7. Nigmatulin, R.I., Osnovy mekhaniki geterogennykh sred (Fundamentals of Heterogeneous Medium Mechanics), Moscow: Nauka, 1973.

    Google Scholar 

  8. Nikolaevskii, V.N., Mekhanika poristykh i treshchinovatykh sred (Mechanics of Porous and Cracky Media), Moscow: Nedra, 1984.

    Google Scholar 

  9. Tovbin, Yu.K., Closure of the Transfer Equations for Flows with a Widely Varying Particle Concentration, Sovremennaya khimicheskaya fizika (Contemporary Chemical Physics), Moscow: Mosk. Gos. Univ., 1998, p. 145.

    Google Scholar 

  10. Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York: McGraw-Hill, 1956. Translated under the title Statisticheskaya mekhanika, Moscow: Inostrannaya Literatura, 1960.

    Google Scholar 

  11. Tovbin, Yu.K., Teoriya fiziko-khimicheskikh protsessov na granitse gaz-tverdoe telo (Theory of Physicochemical Processes at the Gas-Solid Interface), Moscow: Nauka, 1990.

    Google Scholar 

  12. Tovbin, Yu.K. and Tugazakov, R.Ya., Dynamics of the Flow of a Dense Fluid in Narrow Pores, Teor. Osn. Khim. Tekhnol., 2000, vol. 34, no. 2, p. 117.

    Google Scholar 

  13. Votyakov, E.V. and Tovbin, Yu.K., Effect of the Chemical and Structural Inhomogeneities of the Pore Walls on the Sorption Isotherms, Zh. Fiz. Khim., 1994, vol. 68, no. 2, p. 287.

    Google Scholar 

  14. Sokolowski, S. and Fischer, J., Lennard-Jones Mixtures in Slit-like Pores: A Comparison of Simulation and Density-Functional Theory, Mol. Phys., 1990, vol. 71, p. 393.

    Google Scholar 

  15. Tovbin, Yu.K. and Petrova, T.V., Multilayer Adsorption and Capillary Condensation in a Slitlike Pore, Zh. Phis. Khim., 1995, vol. 69, no. 1, p. 127.

    Google Scholar 

  16. Lax, P. and Wendroff, B., Systems of Conservation Laws, Commun. Pure Appl. Math., 1960, vol. 13, p. 217.

    Google Scholar 

  17. Tugazakov, R.Ya., Analyzing the Problem of the Disappearance of a Two-Dimensional Discontinuity, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1989, no. 2, p. 159.

  18. Landau, L.D. and Livshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 6: Gidrodinamika (Fluid Dynamics), Moscow: Nauka, 1986.

    Google Scholar 

  19. Nakoryakov, V.E., Pokusaev, B.G., and Pribaturin, N.A., Interaction between a Shock Wave and a Gas Slug, Dokl. Akad. Nauk SSSR, 1990, vol. 311, no. 5, p. 1230.

    Google Scholar 

  20. Lezhnin, S.I. and Zhakunov, B.S., Modeling the Disruption of the Structure of a Two-Phase Medium under the Effect of Unsteady Dynamic Load, Trudy I Rossiiskoi natsional'noi konferentsii po teploobmenu (Proc. I All-Russia Conf. on Heat Transfer), Moscow: Mosk. Energeticheskii Inst., 1994, vol. 4, p. 126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tovbin, Y.K., Tugazakov, R.Y. & Komarov, V.N. Numerical Study of Dense Fluid Flow in Narrow Pores. Theoretical Foundations of Chemical Engineering 36, 99–106 (2002). https://doi.org/10.1023/A:1014923026745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014923026745

Keywords

Navigation