Skip to main content
Log in

Complestatin Antagonizes the AMPA/Kainate-Induced Neurotoxicity in Cultured Chick Telencephalic Neurons

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Excitatory amino acids are known to induce considerable neurotoxicity in central nervous system. In the present study, the neurotoxicity was induced by application of kainate or AMPA in chick telencephalic neuron, and neuroprotective activity was tested with complestatin that was isolated from streptomyces species. In cultured telencephalic neurons exposed to 500 μM kainate for 2 days, the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX, 5 μM) completely blocked kainate-induced neurotoxicity. Also, complestatin (0.5 μM) completely blocked kainate-induced neuronal injury at a concentration lower than that required for prototype AMPA/kainate receptor antagonist DNQX. In addition, complestatin blocked AMPA-induced neurotoxicity when the neurons were pretreated with cyclothiazide, a desensitization blocker of AMPA receptor. Surprisingly, when the onset of the treatment was delayed for 6 hours, complestatin led to a reduction in kainate-induced neuronal injury. While inhibition of protein kinase C (PKC) by staurosporin induced neurotoxicity, that was blocked by complestatin. Activation of PKC by phorbol dibutyrate partially inhibited the kainate-induced neurotoxicity. These results suggest that complestatin may be used as an anti-excitotoxic agent and involved in the PKC activation contributing to inhibition of neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rothman, S. M. and Olney, J. W. 1986. Glutamate and the pathology of hypoxic-ischemic brain damage. Ann. Neurol. 19: 105–111.

    Google Scholar 

  2. Meldrum, B. S. 1992. Excitatory amino acids in epilepsy and potential novel theraphies. Epilepsy Res. 12:189–196.

    Google Scholar 

  3. Rothman, S. M. and Olney, J. W. 1987. Excitotoxicity and the NMDA receptor. Trends Neurosci. 10:299–302.

    Google Scholar 

  4. Choi, D. W. and Rothman, S. M. 1990. Excitotoxicity in neurodegenerative disorders. Annu. Rev. Neurosci. 13:171–182.

    Google Scholar 

  5. Meldrum, B. S. and Garthwaite, J. 1990. Excitatory amino aicid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11:379–387.

    Google Scholar 

  6. Murphy, S. N. and Miller, R. J. 1989. Regulation of Ca2+ influx into striatal neurons by kainic acid. J. Pharmacol. Exp. Ther. 249:184–193.

    Google Scholar 

  7. Weiss, J. H., Hartley, D. H., Koh, J., and Choi, D. W. 1990. Nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247:1474–1476.

    Google Scholar 

  8. Nadler, J. V. 1979. Kainic acid: neurophysiological and neurotoxic actions. Life Sci. 24:289–300.

    Google Scholar 

  9. Nadler, J. V., Perry, B. W., and Cotman, C. W. 1978. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676–677.

    Google Scholar 

  10. Monaghan, D. T. Z and Cotman, C. W. 1982. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res. 252:91–100.

    Google Scholar 

  11. Swan, J. H. and Meldrum, B. S. 1990. Protection by NMDA antagonists against selective cell loss following transient ischaemia. J. Cereb. Blood Flow Metab. 10:343–351.

    Google Scholar 

  12. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., and Honore, T. 1990. 2,3–Dihydroxy-6–nitro-7–sulfamoyl-benzo (F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–574.

    Google Scholar 

  13. Li, H. and Buchan, A. M. 1993. Treatment with an AMPA antagonist 12 hours following severe normothermic forebrain ischemia prevents CA 1 neuronal injury. J. Cereb. Blood. Flow Metab. 13:933–939.

    Google Scholar 

  14. Kaneko, I., Fearon, D. T., and Austen, K. F. 1980. Inhibition of the alternative pathway of human complement in vitro by a natural microbial product, complestatin. J. Immunol. 124:1194–1198.

    Google Scholar 

  15. Yamamoto, T. and Taguchi, T. 1992. A muscle-derived factor antagonizes the neurotoxicity of glutamate in dissociated cell cultures of chick telencephalic neurons. Neurosci. Lett. 139:205–208.

    Google Scholar 

  16. Hamburger, V. and Hamilton, H. L. 1951. A series of normal stages in the development of the chick embryos. J. Morphol. 88:49–92.

    Google Scholar 

  17. Cull-Candy, S. G. and Usowicz, M. M. 1987. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325:525–528.

    Google Scholar 

  18. Jahr, C. E. and Stevens, C. F. 1987. Glutamate activates multiple single channel conductance in hippocampal neurons. Nature 325:522–525.

    Google Scholar 

  19. Young, A. B. and Fagg, G. E. 1990. Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol. Sci. 11:126–133.

    Google Scholar 

  20. Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B. and Seeburg, P. H. 1990. A family of AMPA selective glutamate receptors. Science 249: 556–560.

    Google Scholar 

  21. Vyklicky, L. Jr., Patneau, D. K. and Mayer, M. L. 1991. Modulation of excitatory synaptic transmission by drugs that reduce desensitization at AMPA/kainate receptors. Neuron 7:971–984.

    Google Scholar 

  22. Patneau, D. K., Vyklicky, L. Jr., and Mayer, M. L. 1993. Hippocampal neurons exhibit cyclothizide-sensitive rapidly desensitising responses to kainate. J. Neurosci. 13:3496–3509.

    Google Scholar 

  23. Buchan, A. 1990. Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted? Cerebrovasc. Brain Metab. Rev. 2:1–26.

    Google Scholar 

  24. Meldrm, B. S. 1990. Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc. Brain Metab. Rev. 2:27–57.

    Google Scholar 

  25. Pulsinelli, W., Sarokin, A., and Buchan, A. 1993. Antagonism of the NMDA and non-NMDA receptors in global versus focal brain ischemia. Prog. Brain Res. 96:125–135.

    Google Scholar 

  26. Buchan, A. M., Xue, D., Huang, Z. G., Smith, K. H., and Lesiuk, H. 1991. Delayed AMPA receptor blockade reduces cerebral infarction by focal ischemia. Neuroreport 2:473–476.

    Google Scholar 

  27. Siman, R., Noszek, J. C., and Kegerise, C. 1989. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage, J. Neurosci. 9:1579–1590.

    Google Scholar 

  28. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88:6368–6371.

    Google Scholar 

  29. Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. 1993. NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537.

    Google Scholar 

  30. Dumuis, A., Sebben, M., Haynes, L., Pin, J. P., and Bockaert, J. 1988. NMDA receptors activate the arachidonic acid cascade system in spatial neurones. Nature 336:68–70.

    Google Scholar 

  31. Churn, S. B., Sombati, S., Taft, W. C., and DeLorenzo, R. J. 1993. Excitotoxicity affects membrane potential and calmodulin kinase II activity in cultured rat cortical neurons. Stroke 24: 271–278.

    Google Scholar 

  32. Mattson, M. P., Dou, P., and Kater, S. B. 1988. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8:2087–2100.

    Google Scholar 

  33. Balazs, R., Hack, N., and Jorgensen, O. S. 1990. Selective stimulation of excitatory amino acid receptor subtypes and survival of cerebellar granule cells in culture: effect of kainic acid. Neuroscience 37:251–258.

    Google Scholar 

  34. Pruss, R. M. and Stauderman, K. A. 1988. Voltage regulated calcium channels involved in the regulation of enkephalin synthesis are blocked by phorbol ester. J. Biol. Chem. 263:13173–13178.

    Google Scholar 

  35. Sheng, M., Thompson, M. A., and Greenberg, M. E. 1991. CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252:1427–1430.

    Google Scholar 

  36. Cambray-Deakin, M. A. and Burgoyne, R. D. 1990. Regulation of neurite outgrowth from cerebellar granule cells in culture: NMDA receptors and protein kinase C. In Excitatory amino acids and neuronal plasticity (Ben-Ari, ed), pp. 245–253. Plenum Press, New York.

    Google Scholar 

  37. Durkin, J. P., Tremblay, R., Chakravarthy, B., Mealing, G., Morley, P., Small, D., and Song, D. 1977. Evidence that the early loss of membrane protein kinase C is a necessary step in the excitatory amino acid-induced death of primary cortical neurons. J. Neurochem. 68:1400–1412.

    Google Scholar 

  38. Maher, P. 2001. How protein kinase C activation protects nerve cells from oxidative stress-induced cell death. J. Neurosci. 21:2929–2938.

    Google Scholar 

  39. Deacon, E. M., Pongracz, J., Griffiths, G., and Lord, J. M. 1997. Isozymes of protein kinase C: differential involvement in apoptosis and pathogenesis. J. Clin. Pathol. 50:124–131.

    Google Scholar 

  40. Konishi, H., Matsuzaki, H., Takaishi, H., Yamamoto, T., Fukunaga, M., Ono, Y., and Kikkawa, U. 1999. Opposing effects of protein kinase Cδ and protein kinase Bα on H2O2-induced apoptosis in CHO cells. Biochem. Biophys. Res. Commun. 264: 840–846.

    Google Scholar 

  41. Ghayur, T., Hugunin, M., Talanian, R. V., Ratnofski, W., Quinlan, C., Emoto, Y., Pandey, P., Datta, R., Huang, Y., Khabanda, S., Allen, H., Kamen, R., Wong, W., and Kufe, D. 1996. Proteolytic activation of protein kinase C delta by an ICE/CED 3–like protease induces characteristics of apoptosis. J. Exp. Med. 184: 2399–2404.

    Google Scholar 

  42. Li, L., Lorenzo, P. S., Bogi, K., Blumberg, P. M., and Yuspa, S. H. 1999. Protein kinase Cδ targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis is normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol. Cell. Biol. 19:8547–8558.

    Google Scholar 

  43. Seo, S. Y., Yun, B. S., Ryoo, I. J., Choi, J. S., Jpp, C. K., Chang, S. Y., Chung, J. M., Oh, S., Gwag, B. J., and Yoo, I. D. 2001. Complestatin is a noncompetitive peptide antagonist of N-methyl-D-aspartate and α-amino-3–hydroxy-5–methyl-4–isoxazolepropioinic acid/kainite receptors: secure blockade of ischemic neuronal death. J. Pharm. Exp. Ther. 299:377–384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, I.D., Yun, B.S., Ryoo, I.J. et al. Complestatin Antagonizes the AMPA/Kainate-Induced Neurotoxicity in Cultured Chick Telencephalic Neurons. Neurochem Res 27, 337–343 (2002). https://doi.org/10.1023/A:1014919531306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014919531306

Navigation