Skip to main content
Log in

Structure Functions In A Wall-Turbulent Shear Flow

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Wavelet and quadrant analyses were applied to turbulent velocity data in order to investigate the transition from the anisotropy of energy-containing eddies to the isotropy of the inertial subrange scales. The quadrant analysis of the wavelet coefficients of longitudinal and vertical velocity components allows the evaluation of the velocity structure functions and the momentum cospectrum as a function of the separation distance and of the quadrants. In an isotropic condition the contribution both of ejections and sweeps (even quadrants), and both of reflections and deflections (odd quadrants), has to be equal. The analysis has shown that in neutrally stratified conditions the transition to isotropy occurs in a frequency range (0.2 < r/z < 3) usually referred to as internal to the inertial subrange (r is separation distance, z is height). In the transition region, as in the isotropic region, the velocity structure functions still agree with the 1941 and 1962 Kolmogorov theories; but on the other hand the structure functions of the even and odd quadrants are fitted by power laws of different slopes in the transition region. The proposed analysis allows the investigation within the transition region of the different dynamical structure in the energy transfer from the energy-containing scales to the isotropic scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A. and Raupach, M. R.: 1993, 'Spectral Scaling in a High Reynolds Number Laboratory Boundary Layer', Boundary-Layer Meteorol. 65, 289–306.

    Article  Google Scholar 

  • Antonov, N. V., Lanotte, A., and Mazzino, A.: 2000a, 'Persistence of Small-Scale Anisotropies and Anomalous Scaling in a Model of Magnetohydrodynamics Turbulence', Phys. Rev. E 61, 6586–6605.

    Article  Google Scholar 

  • Antonov, N. V., Honkonen, Y., Mazzino, A., and Muratore-Ginanneschi, P.: 2000b, 'Manifestation of Anisotropy Persistence in the Hierarchies of Magnetohydrodynamical Scaling Exponents', Phys. Rev. E 62, R5891–R5894.

    Article  Google Scholar 

  • Biferale, L. and Vergassola, M.: 2000, 'Isotropy vs Anisotropy in Small-Scale Turbulence', in preprint, E-print archive arXiv:nlin.CD/0010006.

  • Busch, N. E.: 1973, 'On the Mechanics of Atmospheric Turbulence', in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, pp. 1–65.

    Google Scholar 

  • Camussi, R. and Guy, G.: 1997, 'Orthonormal Wavelet Decomposition of Turbulent Flows: Intermittency and Coherent Structures', J. Fluid Mech. 348, 177–199.

    Article  Google Scholar 

  • Camussi, R., Ciliberto, S., Benzi, R., and Baudet, C.: 1996, 'Statistical Uncertainty of Turbulence Measurements', Phys. Rev. E 54, 100–102.

    Article  Google Scholar 

  • Cava, D., Giostra, U., and Tagliazucca, M.: 1999, 'Spectral Analysis of a Perturbed Stable Boundary Layer', Il Nuovo Cimento 22C(5), 693–704.

    Google Scholar 

  • Celani, A., Lanotte, A., Mazzino, A., and Vergassola, M.: 2000, 'Universality and Saturation of Intermittency in Passive Scalar Turbulence', Phys. Rev. Lett. 84, 2385–2388.

    Article  Google Scholar 

  • Chambers, A. J. and Antonia, R. A.: 1984, 'Atmospheric Estimates of Power-Law Exponents µ and µ?, Boundary-Layer Meteorol. 28, 343–352.

    Article  Google Scholar 

  • Hayashi, T.: 1994, 'An Analysis of Wind Velocity Fluctuations in the Atmospheric Surface Layer Using an Orthonormal Wavelet Transform', Boundary-Layer Meteorol. 70, 307–326.

    Article  Google Scholar 

  • Hayot, F. and Jayaprakash, C.: 2000, 'Relations between Intermittency and Structure Function Exponents in Turbulence', Phys. Fluids 12, 327–334.

    Article  Google Scholar 

  • Henjes, K.: 1997, 'Isotropic and Anisotropic Correlations in TurbulentWind Speed Data', Boundary-Layer Meteorol. 84, 149–167.

    Article  Google Scholar 

  • Henjes, K.: 1999, 'On Probing the Inertial Subrange', Boundary-Layer Meteorol. 91, 367–384.

    Article  Google Scholar 

  • Howell, J. F. and Mahrt, L.: 1994, 'An Adaptive Decomposition: Application to Turbulence', in Wavelets in Geophysics, Academic Press, Inc., San Diego, CA, pp. 107–128.

    Chapter  Google Scholar 

  • Katul, G. G., Albertson, J. D., Chu, C. B., and Parlange, M. B.: 1994, 'Intermittency in Atmospheric Surface Layer Turbulence: The Orthonormal Wavelet Representation', in Wavelets in Geophysics, Academic Press, Inc., San Diego, CA, pp. 81–105.

    Chapter  Google Scholar 

  • Katul, G. G., Kuhn, G., Schieldge, J., and Hsieh, C.: 1997, 'The Ejection-Sweep Character of Scalar Fluxes in the Unstable Surface Layer', Boundary-Layer Meteorol. 83, 1–26.

    Article  Google Scholar 

  • Katul, G. G., Parlange, M. B., Albertson, J. D., and Chu, C. R.: 1995, 'Local Isotropy in the Sheared and Heated Atmospheric Surface Layer', Boundary-Layer Meteorol. 72, 123–148.

    Article  Google Scholar 

  • Katul, G., Vidakovic, B., and Albertson, J.: 2001, 'Estimating Global and Local Scaling Exponents in Turbulent Flows Using Discrete Wavelet Transformations', Phys. Fluids 13, 241–250.

    Article  Google Scholar 

  • Kolmogorov, A. N.: 1941, 'The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number', Dokl. Akad. Nauk. SSSR 30, 9–13.

    Google Scholar 

  • Kolmogorov, A. N.: 1962, 'A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number', J. Fluid Mech. 13, 82–85.

    Article  Google Scholar 

  • Kraichnan, R. H.: 1974, 'On Kolmogorov's Inertial-Range Theories', J. Fluid. Mech. 62, 305–330.

    Article  Google Scholar 

  • Kumar, P. and Foufoula-Georgiou, E.: 1994, 'Wavelet Analysis in Geophysics: An Introduction', in Wavelets in Geophysics, Academic Press, Inc., San Diego, CA, pp. 1–43.

    Google Scholar 

  • Lumley, J. L.: 1967, 'Similarity and the Turbulent Energy Spectrum', Phys. Fluids 10, 855–858.

    Article  Google Scholar 

  • Lykossov, V. N. and Wamser, C.: 1995, 'Turbulence Intermittency in the Atmospheric Surface Layer over Snow-Covered Sites', Boundary-Layer Meteorol. 72, 393–409.

    Article  Google Scholar 

  • McMillen, R. T.: 1988, 'An Eddy Correlation Technique with Extended Applicability to Non-Simple Terrain', Boundary-Layer Meteorol. 43, 231–245.

    Article  Google Scholar 

  • Mestayer, P.: 1982, 'Local Isotropy in a High-Reynolds-Number Turbulent Boundary Layer', J. Fluid Mech. 125, 475–503.

    Article  Google Scholar 

  • Mestayer, P. G., Gibson, C. H., Coantic, M. F., and Patel, S.: 1976, 'Local Anisotropy in Heated and Cooled Turbulent Boundary Layer', Phys. Fluids 19, 1279–1287.

    Article  Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1975, Statistical Fluid Mechanics, Vol. 2, MIT Press, Cambridge, 453 pp.

    Google Scholar 

  • Mydlarski, L. and Warhaft, Z.: 1998, 'Passive Scalar Statistics in High-Peclet-Number Grid Turbulence', J. Fluid Mech. 358, 135–175.

    Article  Google Scholar 

  • Nelkin, M.: 1999, 'Resource Letter TF-1: Turbulence in Fluids', in preprint, E-print archive chaodyn/9906023.

  • Obukhov, A. M.: 1962, 'Some Specific Features of Atmospheric Turbulence', J. Fluid Mech. 13, 77–81.

    Article  Google Scholar 

  • Pond S., Stewart, R. W., and Burling, R. W.: 1963, 'Turbulence Spectra in the Wind over Waves', J. Atmos. Sci. 20, 319–324.

    Article  Google Scholar 

  • Pumir, A. and Shraiman, B. I.: 1995, 'Persistent Small-Scale Anisotropy in Homogeneous Shear Flow', Phys. Rev. Lett. 75, 3114–3117.

    Article  Google Scholar 

  • She, Z. S. and Leveque, E.: 1994, 'Universal Scaling Laws in Fully Developed Turbulence', Phys. Rev. Lett. 72, 336–339.

    Article  Google Scholar 

  • Shraiman, B. I. and Siggia, E. D.: 2000, 'Scalar Turbulence', Nature 405, 639–646.

    Article  Google Scholar 

  • Sreenivasan, K. R.: 1991, 'On Local Isotropy of Passive Scalars in Turbulent Shear Flows', Proc. Roy. Soc. (London) A434, 165–182.

    Article  Google Scholar 

  • Sreenivasan, K. R. and Antonia, R. A.: 1997, 'The Phenomenology of Small-Scale Turbulence', Annu. Rev. Fluid. Mech. 29, 435–472.

    Article  Google Scholar 

  • Sreenivasan, K. R., Antonia, R. A., and Britz, D.: 1979, 'Local Isotropy and Large Structures in a Heated Turbulent Jet', J. Fluid Mech. 94, 745–775.

    Article  Google Scholar 

  • Stolovitzky, G. and Sreenivasan, K. R.: 1993, 'Scaling of Structure Functions', Phys. Rev. E 48, 33–36.

    Article  Google Scholar 

  • Tennekes, H.: 1973, 'Intermittency of the Small-Scale Structure of Atmospheric Turbulence', Boundary-Layer Meteorol. 4, 241–250.

    Article  Google Scholar 

  • Van Atta, C.: 1991, 'Local Isotropy on the Smallest Scales of Turbulent Scalar and Velocity Fields', in J. C. R. Hunt, O. M. Phillips, and D. Williams (eds.), Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, Royal Society, 240 pp.

  • Wang, L. P., Chen, S., Brasseur, J. G., and Wyngaard, J. C.: 1996, 'Examination of Hypothesis in the Kolmogorov Refined Turbulence Theory through High-Resolution Simulations. Part 1. Velocity field', J. Fluid Mech. 309, 113–156.

    Article  Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1972, 'Cospectral Similarity in the Atmospheric Surface Layer', Quart. J. Roy. Meteorol. Soc. 98, 590–603.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giostra, U., Cava, D. & Schipa, S. Structure Functions In A Wall-Turbulent Shear Flow. Boundary-Layer Meteorology 103, 337–359 (2002). https://doi.org/10.1023/A:1014917120110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014917120110

Navigation