Skip to main content
Log in

Uptake of Mannose-Terminal Glucocerebrosidase in Cultured Human Cholinergic and Dopaminergic Neuron Cell Lines

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Enzyme replacement therapy has been shown to be particularly effective for patients with type 1 (non-neuronopathic) Gaucher disease. However, intravenously administered glucocerebrosidase does not reverse or halt the progression of brain damage in patients with type 2 (acute neuronopathic) Gaucher disease. A previous investigation revealed that intracerebral infusion of mannose-terminal glucocerebrosidase was safe in experimental animals. The enzyme had a comparatively long half-life in the brain. It was transported by convection from the site of infusion along white matter fiber tracts to the cerebral cortex where it was endocytosed by neurons. In anticipation of intracerebral administration of mannose-terminal glucocerebrosidase to patients with type 2 Gaucher disease, it was important to learn the mechanism involved in its cellular uptake. We therefore compared the endocytosis of this enzyme by J774 macrophage cells with that in two human neuronal cell lines and a human astrocyte cell line. Mannose-terminal glucocerebrosidase was taken up by cholinergic LA-N-2 cells, but to a much lower extent than by macrophages. Considerably less of the enzyme was endocytosed by dopaminergic SH-SY5Y cells. It was not taken up by NHA astrocytes. The findings provide encouragement for an exploration of intracerebral administration of glucocerebrosidase in patients with type 2 Gaucher disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brady, R. O., Kanfer, J. N., and Shapiro, D. 1965. Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher's disease. Biochem. Biophys. Res. Commun. 18:221–225.

    Google Scholar 

  2. Barton, N. W., Brady, R. O., Dambrosia, J. M., Di Bisceglie, A. M., Doppelt, S. H., Hill, S. C., Mankin, H. J., Murray, G. J., Parker, R. I., Argoff, C. E., and et al. 1991. Replacement therapy for inherited enzyme deficiency-macrophage-targeted glucocerebrosidase for Gaucher's disease. N. Engl. J. Med. 324:1464–1470.

    Google Scholar 

  3. Erikson, A., Johansson, K., Mansson, J. E., and Svennerholm, L. 1993. Enzyme replacement therapy of infantile Gaucher disease. Neuropediatrics 24:237–238.

    Google Scholar 

  4. Prows, C. A., Sanchez, N., Daugherty, C., and Grabowski, G. A. 1997. Gaucher disease: enzyme therapy in the acute neuronopathic variant. Am. J. Med. Genet. 71:16–21.

    Google Scholar 

  5. Schiffmann, R., Heyes, M. P., Aerts, J. M., Dambrosia, J. M., Patterson, M. C., DeGraba, T., Parker, C. C., Zirzow, G. C., Oliver, K., Tedeschi, G., Brady, R. O., and Barton, N. W. 1997. Prospective study of neurological responses to treatment with macrophage-targeted glucocerebrosidase in patients with type 3 Gaucher's disease. Ann. Neurol. 42:613–621.

    Google Scholar 

  6. Grafe, M., Thomas, C., Schneider, J., Katz, B., and Wiley, C. 1988. Infantile Gaucher's disease: a case with neuronal storage. Ann. Neurol. 23:300–303.

    Google Scholar 

  7. Nilsson, O. and Svennerholm, L. 1982. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J. Neurochem. 39:709–718.

    Google Scholar 

  8. Zirzow, G. C., Sanchez, O. A., Murray, G. J., Brady, R. O., and Oldfield, E. H. 1999. Delivery, distribution, and neuronal uptake of exogenous mannose-terminal glucocerebrosidase in the intact rat brain. Neurochem. Res. 24:301–305.

    Google Scholar 

  9. Stahl, P. D., Rodman, J. S., Miller, M. J., and Schlesinger, P. H. 1978. Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc. Natl. Acad. Sci. USA 75:1399–1403.

    Google Scholar 

  10. Seeger, R. C., Rayner, S. A., Banerjee, A., Chung, H., Laug, W. E., Neustein, H. B., and Benedict, W. F. 1977. Morphology, growth, chromosomal pattern and fibrinolytic activity of two new human neuroblastoma cell lines. Cancer Res. 37:1364–1371.

    Google Scholar 

  11. Richardson, U. I., Liscovitch, M., and Blusztajn, J. K. 1989. Acetylcholine synthesis and secretion by LA-N-2 human neuroblastoma cells. Brain Res. 476:323–331.

    Google Scholar 

  12. Perez-Polo, J. R., Werbach-Perez, K., and Tiffany-Castiglioni, E. 1979. A human clonal cell line model of differentiating neurons. Dev. Biol. 71:341–355.

    Google Scholar 

  13. Spadari, S., Sala, F., and Pedrali-Noy, G. 1982. Aphidicolin: a specific inhibitor of nuclear DNA replication in eukaryotes. TIBS January:29–32.

  14. Pedrali-Noy, G., Belvedere, M., Crepaldi, T., Focher, F., and Spadari, S. 1982. Inhibition of DNA replication and growth of several human and murine neoplastic cells by aphidicolin without detectable effect upon synthesis of immunoglobulins and HLA antigens. Cancer Res. 42:3810–3813.

    Google Scholar 

  15. Newburg, D. S., Yatziv, S., McCluer, R. H., and Raghavan, S. 1986. beta-Glucosidase inhibition in murine peritoneal macrophages by conduritol-B-epoxide: an in vitro model of the Gaucher cell. Biochim. Biophys. Acta 877:121–126.

    Google Scholar 

  16. Das, P. K., Murray, G. J., Gal, A. E., and Barranger, J. A. 1987. Glucocerebrosidase deficiency and lysosomal storage of glucocerebroside induced in cultured macrophages. Exp. Cell Res. 168:463–474.

    Google Scholar 

  17. Doebber, T. W., Wu, M. S., Bugianesi, R. L., Ponpipom, M. M., Furbish, F. S., Barranger, J. A., Brady, R. O., and Shen, T. Y. 1982. Enhanced macrophage uptake of synthetically glycosylated human placental beta-glucocerebrosidase. J. Biol. Chem. 257:2193–2199.

    Google Scholar 

  18. Suzuki, K. 1978. Enzymic diagnosis of sphingolipidoses. Methods Enzymol. 50:456–488.

    Google Scholar 

  19. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85.

    Google Scholar 

  20. Barranger, J. A., Rapoport, S. I., Fredericks, W. R., Pentchev, P. G., MacDermot, K. D., Steusing, J. K., and Brady, R. O. 1979. Modification of the blood-brain barrier: increased concentration and fate enzymes entering the brain. Proc. Natl. Acad. Sci. USA 76:481–485.

    Google Scholar 

  21. Yamaguchi, Y., Dalle-Molle, E., and Hardison, W. G. 1993. Hepatocyte horseradish peroxidase uptake is saturable and inhibited by mannose-terminal glycoproteins. Am. J. Physiol. 264:G880–885.

    Google Scholar 

  22. Gray, J. S., Yang, B. Y., and Montgomery, R. 1998. Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohydr. Res. 311:61–69.

    Google Scholar 

  23. Zanetta, J. P., Reeber, A., Dontenwill, M., and Vincendon, G. 1984. Evidence for the presence of lectins with mannose specificity in the rat cerebellum. J. Neurochem. 42:334–339.

    Google Scholar 

  24. Burudi, E. M. and Regnier-Vigouroux, A. 2001. Regional and cellular expression of the mannose receptor in the post-natal developing mouse brain. Cell Tissue Res. 303:307–317.

    Google Scholar 

  25. Schluff, P., Flott-Rahmel, B., Gieselmann, V., Zimmer, P., Das, A., and Ullrich, K. 1998. Localization of receptors for endocytosis of lysosomal enzymes on different brain cells. J. Inherit. Metab. Dis. 21:313–317.

    Google Scholar 

  26. Neudorfer, O., Giladi, N., Elstein, D., Abrahamov, A., Turezkite, T., Aghai, E., Reches, A., Bembi, B., and Zimran, A. 1996. Occurrence of Parkinson's syndrome in type I Gaucher disease. Qjm 89:691–694.

    Google Scholar 

  27. Machaczka, M., Rucinska, M., Skotnicki, A. B., and Jurczak, W. 1999. Parkinson's syndrome preceding clinical manifestation of Gaucher's disease. Am. J. Hematol. 61:216–217.

    Google Scholar 

  28. Tybulewicz, V. L., Tremblay, M. L., LaMarca, M. E., Willemsen, R., Stubblefield, B. K., Winfield, S., Zablocka, B., Sidransky, E., Martin, B. M., Huang, S. P., and et al. 1992. Animal model of Gaucher's disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357:407–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schueler, U., Kaneski, C., Murray, G. et al. Uptake of Mannose-Terminal Glucocerebrosidase in Cultured Human Cholinergic and Dopaminergic Neuron Cell Lines. Neurochem Res 27, 325–330 (2002). https://doi.org/10.1023/A:1014915430398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014915430398

Navigation