Skip to main content
Log in

A New Pathway of Photoinactivation of Photosystem II. Irreversible Photoreduction of Pheophytin Causes Loss of Photochemical Activity of Isolated D1–D2–Cytochrome b559 Complex

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A new pathway of photoinactivation of photosystem II (PS II) connected with irreversible photoaccumulation of reduced pheophytin (Ph) in isolated D1–D2–cytochrome b 559 complexes of reaction center (RC) of PS II was discovered. The inhibitory effects of white light illumination on photochemical activity of D1–D2–cytochrome b 559 complexes of RCs of photosystem II, isolated from pea chloroplasts, have been compared under anaerobic conditions in the absence and in the presence of sodium dithionite, electron transfer from which to the oxidized primary electron donor P680+ results in the photoaccumulation of anion-radical of the primary electron acceptor, PH. In both cases, prolonged illumination (1-5 min, 120 W/m2) led to a pronounced loss of the photochemical activity as it was monitored by measuring the amplitude of the reversible photoinduced absorbance changes at 682 nm related to the photoreduction of Ph. The extent of the photoinactivation depended on the illumination time and pH of the medium. At pH 8.0, the presence of dithionite during photoinactivation brought about a protective effect compared to that in a control sample. In contrast, lowering pH to 6.0 increased the sensitivity to photoinactivation in the dithionite containing samples. For 5 min irradiation, the photochemical activity in the absence and in the presence of dithionite decreased by 35 and 72%, respectively (this was accompanied by an irreversible bleaching of the pheophytin Qx absorption band at 542 nm). Degradation of the D1 and D2 proteins was not observed under these conditions. A subsequent addition of an electron acceptor, potassium ferricyanide, to the illuminated samples restored neither the amplitude of the signal at 682 nm nor absorption at 542 nm. It is suggested that at pH < 7.0 the photoaccumulated PH is irreversibly converted into a secondary, most probably protonated form, that does not lead to destruction of the RCs but prevents the photoformation of the primary radical pair [P680+PH]. A possible application of this effect to photoinactivation of PS II in vivo is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Powles, S. B. (1984) Ann. Rev. Plant Physiol., 35, 13-44.

    Google Scholar 

  2. Klimov, V. V., Allakhverdiev, S. I., Demeter, Sh., and Krasnovsky, A. A. (1979) Dokl. Akad. Nauk SSSR, 1, 227-230.

    Google Scholar 

  3. Mattoo, A. K., Marder, J. B., and Edelman, M. (1989) Cell, 56, 241-246.

    Article  PubMed  Google Scholar 

  4. Ohad, I., Kyle, D. J., and Arntzen, C. J. (1984) J. Cell Biol., 99, 481-485.

    Google Scholar 

  5. Nanba, O., and Satoh, K. (1987) Proc. Natl. Acad. Sci. USA, 84, 109-112.

    Google Scholar 

  6. Barber, J., Chapman, D. J., and Telfer, A. (1987) FEBS Lett., 220, 67-73.

    Google Scholar 

  7. Gounaris, K., Chapman, D. J., Booth, P. J., Crystall, B., Giorgi, L. B., Klug, D. R., Porter, G., and Barber, J. (1990) FEBS Lett., 265, 88-92.

    PubMed  Google Scholar 

  8. Konermann, L., and Holzwarth, A. R. (1996) Biochemistry, 35, 829-842.

    PubMed  Google Scholar 

  9. Telfer, A., He, W.-Z., and Barber, J. (1990) Biochim. Biophys. Acta, 1017, 143-151.

    Google Scholar 

  10. Telfer, A., de Las Rivas, J., and Barber, J. (1991) Biochim. Biophys. Acta, 1060, 106-114.

    Google Scholar 

  11. He, W.-Z., Newell, W. L., Haris, P. I., Chapman, D., and Barber, J. (1991) Biochemistry, 30, 10220-10226.

    PubMed  Google Scholar 

  12. De Las Rivas, J., Andersson, B., and Barber, J. (1992) FEBS Lett., 301, 246-252.

    PubMed  Google Scholar 

  13. De Las Rivas, J., Shipton, C. A., Ponticos, M., and Barber, J. (1993) Biochemistry, 32, 6944-6950.

    PubMed  Google Scholar 

  14. Shipton, C. A., and Barber, J. (1991) Proc. Natl. Acad. Sci. USA, 88, 6691-6695.

    PubMed  Google Scholar 

  15. Shipton, C. A., and Barber, J. (1992) Biochim. Biophys. Acta, 1099, 85-90.

    PubMed  Google Scholar 

  16. De Las Rivas, J., Telfer, A., and Barber, J. (1993) Biochim. Biophys. Acta, 1142, 155-164.

    Google Scholar 

  17. Barbato, R., Shipton, C. A., Giacometti, G. M., and Barber, J. (1991) FEBS Lett., 290, 162-166.

    PubMed  Google Scholar 

  18. Vass, I., Styring, S., Hundal, T., Koivuniemi, A., Aro, E.-M., and Andersson, B. (1992) Proc. Natl. Acad. Sci. USA, 89, 1408-1412.

    PubMed  Google Scholar 

  19. Vass, I., and Inoue, Y. (1992) in The Photosystems: Structure, Function and Molecular Biology, Topics in Photosynthesis (Barber, J., ed.) Vol. 11, Elsevier, Amsterdam, pp. 259-294.

    Google Scholar 

  20. Wang, W. S., Chapman, D. J., and Barber, J. (1992) Plant Physiol., 99, 21-25.

    Google Scholar 

  21. Khristin, M. S., Nikitishena, O. V., Smolova, T. N., and Zastrizhnaya, O. M. (1997) Biol. Membr. (Moscow), 14, 133-141.

    Google Scholar 

  22. Fujita, I., Davis, M. S., and Fajer, J. J. (1978) J. Am. Chem. Soc., 100, 6280-6282.

    Google Scholar 

  23. Tavish, H., Picorel, R., and Seibert, M. (1989) Plant Physiol., 89, 452-456.

    Google Scholar 

  24. Klimov, V. V., Klevanik, A. V., Shuvalov, V. A., and Krasnovsky, A. A. (1977) FEBS Lett., 82, 183-186.

    PubMed  Google Scholar 

  25. Laemmli, U. K. (1970) Nature, 227, 680-685.

    PubMed  Google Scholar 

  26. Danielius, R. V., Satoh, K., van Kan, P. J. M., Plijter, J. J., Nuijs, A. M., and van Gorcom, H. J. (1987) FEBS Lett., 213, 241-244.

    Google Scholar 

  27. Allakchverdiev, S. I., Komenda, J., Feiziev, J. M., Nedbal, L., and Klimov, V. V. (1993) Photosynthetica, 28, 281-288.

    Google Scholar 

  28. Van der Voss, R., van Leeuven, P. Y., Braun, P., and Hoff, A. Y. (1992) Biochim. Biophys. Acta, 1140, 184.

    Google Scholar 

  29. Garlaschi, F. M., Zucchelli, G., Giavazzi, P., and Yenning, R. C. (1994) Photosyn. Res., 41, 465.

    Google Scholar 

  30. Cattaneo, R., Zucchlli, G., Garlaschi, F. M., Funzi, L., and Jennings, R. C. (1995) Biochemistry, 34, 15267-15275.

    PubMed  Google Scholar 

  31. Shkuropatov, A. Ja., Khatypov, R. A., Shkuropatova, V. A., Zvereva, M. G., Owens, T. G., and Shuvalov, V. A. (1999) FEBS Lett., 450, 163-167.

    PubMed  Google Scholar 

  32. Eijchelhoff, C., Vacha, F., van Grondelle, R., Dekker, J. P., and Barber, J. (1997) Biochim. Biophys. Acta, 1318, 266-274.

    Google Scholar 

  33. Yruela, I., Tomas, R., Alfanso, M., and Picorel, R. (1999) J. Photochem. Photobiol. B: Biol., 50, 129-136.

    Google Scholar 

  34. Kazakova, A. A., Kiselev, B. A., Kozlov, Yu. N., and Klimov, V. V. (1991) Biofizika, 36, 933-938.

    Google Scholar 

  35. Nikitishena, O. V., Khristin, M. S., and Klimov, V. V. (1993) Biol. Membr. (Moscow), 10, 321-329.

    Google Scholar 

  36. Shipton, C. A., and Barber, J. (1994) Eur. J. Biochem., 220, 801-808.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Nikitishena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitishena, O.V., Smolova, T.N., Khatypov, R.A. et al. A New Pathway of Photoinactivation of Photosystem II. Irreversible Photoreduction of Pheophytin Causes Loss of Photochemical Activity of Isolated D1–D2–Cytochrome b559 Complex. Biochemistry (Moscow) 67, 364–371 (2002). https://doi.org/10.1023/A:1014896702869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014896702869

Navigation