Skip to main content
Log in

Conformational analysis of nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, based on quantum mechanical calculations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The structure and the conformational behavior of the HIV-1 reverse transcriptase inhibitor, 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b2′,3′-e][1,4]diazepin-6-one (nevirapine), is investigated by semiempirical (MNDO, AM1 and PM3) method, ab initio at the HF/3-21G and HF/6-31G** levels and density functional theory at the B3LYP/6-31G** level. The fully optimized structure and rotational potential of the nitrogen and carbon bond in the cyclopropyl ring were examined in detail. A similar geometrical minimum is obtained from all methods which shows an almost identical structure to the geometry of the molecule in the complex structure with HIV-1 reverse transcriptase. To get some information on the structure in solution, NMR chemical shift calculations were also performed by a density functional theory at the B3LYP/6-31G** level, using GIAO approximation. The calculated 1H-NMR and 13C-NMR spectra for the energy minimum geometry agree well with the experimental results, which indicated that the geometry of nevirapine in solution is very similar to that of the molecule in the inhibition complex. Furthermore, the obtained results are compared to the conformational studies of other non-nucleoside reverse transcriptase inhibitors and reveal a common agreement of the non-nucleoside reverse transcriptase inhibitors. The specific butterfly-like shape and conformational flexibility within the side chain of the non-nucleoside reverse transcriptase inhibitors play an important role inducing conformational change of HIV-1 reverse transcriptase structure and are essential for the association at the inhibition pocket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merluzzi, V.J., Hargrave, K.D., Labadia, M.J., Grozinger, K., Skoog, M., Wu, J.C., Shinh, C., Shinh, C.-K., Eckner, K., Hattooy, S. and Sullivan, L.L., Science, 250 (1990) 1411.

    Google Scholar 

  2. Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Nitta, I., Baba, M., Shigeta, S., Walker, R.T., De Clercq, E. and Miyasaka, T., J. Med. Chem., 35 (1992) 337, 4713.

    Google Scholar 

  3. Pauwels, R., Andries, K., Desmyter, J., Schols, D., Kukla, M.J., Breslin, H.J., Raeymaechers, A., Gelder, J.V., Westenborghs, R., Heykants, J., Schellekens, K., Janessen, M.A.C., De Clercq, E. and Janssen, P.A.J., Nature, 343 (1990) 470.

    Google Scholar 

  4. Ren, J., Esnouf, R., Garman, E., Somers, D., Ross, C., Kirby, I., Keeling, J., Darby, G., Jones, Y., Stuart, D. and Stammers, D., Nature Struct. Biol., 2 (1995) 293.

    Google Scholar 

  5. Ren, J., Esnouf, R.M., Hopkins, A.L., Warren, J., Balzarini, J., Stuart, D.D. and Stammers, D.K., Biochemistry, 37 (1998) 14394.

    Google Scholar 

  6. Jaeger, J., Restle, T. and Steitz, T.A., EMBO J., 17 (1998) 4535.

    Google Scholar 

  7. Yadav, P.N.S., Das, K., Ding, J., Arnold, E., Yadav, J.S., Modak, M.J., J. Mol. Struct. (THEOCHEM), 423 (1998) 101.

    Google Scholar 

  8. Byrnes, V.W., Sardana, V.V., Schleif, W.A., Condra, J.H., Waterbury, J.A., WolEgang, J.A., Long, W.J., Schneider, C.L., Schlabach, A.J., Wolanski, B.S., Graham, D.A., Gotlib, L., Rhodes, A., Titus, D.L., Roth, E., Blahy, O.M., Quintero, J.C., Staszewski, S. and Emini, E.A., Antimicrob. Agents Chemother., 37 (1993) 1576.

    Google Scholar 

  9. Vasudevachari, M.B., Battista, C., Lane, H.C., Psallidopoulos, M.C., Zzhao, B., Cook, J., Paimer, J.R., Romero, D.L., Tarpley, W.G. and Salzman, N.P., Virology, 190 (1992) 269.

    Google Scholar 

  10. Balzarini, J., Karlsson, A., Perez-Perez-Perez, M.-J., Vrang, L., Walbers, J., Zzhang, H., Oberg, B., Vandamme, A.-M., Camarasa, M.-J. and De Clercq, E., Virology, 192 (1993) 246.

    Google Scholar 

  11. Richman, D.D., Antimicrob. Agents Chemother., 37 (1993) 1207.

    Google Scholar 

  12. Kohlstaedt, A.L., Wang, J., Friedman, M.J., Rice, A.P. and Ateitz, A.T., Science., 256 (1992) 1783.

    Google Scholar 

  13. Ren, J., Esnouf, M.R., Hopkins, L.A., Stuart, I.D. and Stammers, K.D., J. Med. Chem., 42 (1999) 3845.

    Google Scholar 

  14. Mui, W.P., Jacober, P.S., Hargrave, D.K. and Adams, J., J. Med. Chem., 35 (1992) 201.

    Google Scholar 

  15. Liaw, Y.C., Gao, Y.G., Robinson, H. and Wang, A.H.J., J. Am. Chem. Soc., 113 (1991) 1857.

    Google Scholar 

  16. Das, K., Ding, J., Hsiou, Y., Clark Jr, D.A., Moereels, H., Koymans, L., Andries, K., Pauwels, R., Janssen, J.A.P., Boyer, L.P., Clark, Patrick., Smith Jr., H.R., Kroeger Smith B.M., Michejda, J.C., Hughes, S.H. and Arnold, E., J. Mol. Biol., 264 (1996) 1085.

    Google Scholar 

  17. Stammers, D.K., Somers, D.O., Ross, C.K., Kirby, I., Ray, P.H., Wilson, J.E., Norman, M., Ren, J.S., Esnouf, R.M. and Garman, E.F., J. Mol. Biol., 242 (1994) 586.

    Google Scholar 

  18. Berstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M. D., Rodgers, J.R., Kennard, O., Shimanoushi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535–542.

    Google Scholar 

  19. Jacobo-Molina, A., Ding, J., Nanni, R., Clark, A.D., Lu, X., Tantillo, C., Willianms, R.L., Kamer, G., Ferris, A.L., Clark, P., Hizi, A., Hughess, S.H. and Arnold, E., Proc. Natl. Acad. Sci. USA., 90 (1993) 6320.

    Google Scholar 

  20. Hopkins A.L., Ren, J., Esnouf, R.M., Willcox, B.E., Jones, E.Y., Ross, C., Miyasaka, T., Walker, R.T., Tanaka, H., Stammers, D.K. and Stuart, D.I., J. Med. Chem., 39 (1996) 1589.

    Google Scholar 

  21. Hsiou, Y., Ding, J., Das, K., Clark, A.D., Hughes, S.H. and Armold, E., Structure, 4 (1996) 853.

    Google Scholar 

  22. Jaeger, J., Smerdon, J.S., Wang, J., Boisvert, C.D. and Steitz, A.T., Structure, 2 (1994) 869.

    Google Scholar 

  23. Najmudin, S., Cote, L.M., Montano, P.S., Gu, J. and Georgiadis, M., J. Mol. Biol., 296 (2000) 613.

    Google Scholar 

  24. Ding, J., Das, K., Moereels, H., Koymans, L., Andries, K., Janssen, P.A.J., Hughes, S.H. and Arnold, E., Nat. Struct. Biol., 2 (1995) 407–415.

    Google Scholar 

  25. Ding, J., Das, K., Tantillo, C., Zhang, W., Clark, A.D., Jessen, S., Lu, X., Hsiou, Y., Jacobo-Molina, A., Andries, K., Pauwels, R., Moereels, H., Koymans, L, Jannssen, P.A.J., Smith, R.H., Koepke, M.K., Michejda, C.J., Hughes, S.H. and Arnold, E., Structure, 3 (1995) 365–379.

    Google Scholar 

  26. Merluzzi, V.J., Hargrave, K.D., Labadia, K.J., Qrozinger, K., Shinh, C. and Sullivan, L., Science, 250 (1990) 1411.

    Google Scholar 

  27. Kelly, A.K., Proudfoot, r.J., McNeil, W.d., Patel, R.u., David, E., Hargrave, D.k., Cardozo, M., agarwal, A. and Adams, J., J. Med. Chem., 38 (1995) 4839.

    Google Scholar 

  28. De Clercq, E., AIDS Res. Hum. Retroviruses, 8 (1992) 119.

    Google Scholar 

  29. Lawtrakul, L., Hannongbua, S., Beyer, A. and Wolschann, P., Biol. Chem., 380 (1999) 265.

    Google Scholar 

  30. Lawtrakul, L., Hannongbua, S., Beyer, A. and Wolschann, P., Monatsh. Chem., 130 (1999) 1347.

    Google Scholar 

  31. Hannongbua, S., Saen-oon, S., Pungpo, P. and Wolschann, P., Molecular Calculations on the Conformation of HIV-1 Reverse Transcriptase Inhibitors 4,5,6,7-tetrahydroimidazo-8-chloro-5-methyl-(3-methyl-2-buthenyl) imidazo [4,5,1-jk][1,4]-benzodiazepine-2-(1H)-thione (8-chloro-TIBO), Monatsh. Chem., (in press).

  32. Ren, J., Esnouf, R., Hopkins, A., Ross, C., Jones, Y., Stammers, D. and Stuart, D., Structure, 3 (1995) 915.

    Google Scholar 

  33. Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT06877 (www.Nevirapine.Com).

  34. http://alpha.bmc.uu.sc/¡«gerard/hetero/NEV.html

  35. Gaussian, Inc., Carnegie Office Park, Building Six, Pittsburgh, PA 15106.

  36. Ditchfield, R., Mol. Phys., 27 (1974) 789.

    Google Scholar 

  37. Hargrave, K.D., Proudfoot, J.R., Grozinger, K.G., Cullen, E., Kapadia, S.R., Petal, U.R., Fuchs, V.U., Mauldin, S.C., Vitous, J., Behnke, M.L., Klunder, J.M., Pal, K., Skiles, J.W., McNeil, D.W., Rose, J.M., Chow, G.C., Skoog, M.T., Wu, J.C., Schmidt, G., Engel, W.W., Eberlein, W.G., Saboe, T.D., Campbell, S.J., Rosenthal, A.S. and Adams, J., J.Med. Chem., 34 (1991) 2231.

    Google Scholar 

  38. Norman, M.H., Minick, D.J. and Martin, G.E., J. Heterocyclic Chem., 30 (1993) 771.

    Google Scholar 

  39. Cheeseman, J.R., Trucks, G.W., Keith, T.A. and Frisch, M.J., J. Chem. Phys., 104 (1996) 5497.

    Google Scholar 

  40. Vaara, J., Ruud, K., Vahtras, O., Ågren, H. and Jokisaari, J., J. Chem. Phys., 109 (1998) 1212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannongbua, S., Prasithichokekul, S. & Pungpo, P. Conformational analysis of nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, based on quantum mechanical calculations. J Comput Aided Mol Des 15, 997–1004 (2001). https://doi.org/10.1023/A:1014881723431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014881723431

Navigation