Skip to main content
Log in

Ion Hydration and Large Electrocaloric Effect

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Starting from a discussion of the grand potential change associated with introduction of ions into water, the electrocaloric effect for the system ion–surrounding water is calculated by means of this recent statistical approach to the problem of water in a high electric field. It is concluded that this effect is essential for the hydration of ions, in particular, for the heat of solution of salts. Consistency between the present approach and recent literature results of a density functionals calculation, as well as experimental data for sequential enthalpies of hydration of doubly charged ions in the gas phase, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Born, Z. Phys. 1, 45 (1920).

    Google Scholar 

  2. B. M. Pettitt, Theoret. Chem. Account. 103, 171 (2000).

    Google Scholar 

  3. M. Peschke, A. T. Blades, and P. Kebarle, J. Phys. Chem. A 102, 9978 (1998).

    Google Scholar 

  4. M. Pavlov, P. E. M. Siegbahn, and M. Sandström, J. Phys. Chem. A 102, 219 (1998).

    Google Scholar 

  5. J. R. Bontha and P. N. Pintauro, J. Phys. Chem. 96, 7778 (1992).

    Google Scholar 

  6. L. D. Landau and E. M. Lifshits, Statisticheskaya Fizika (Izd. Tekh.-Teor. Lit., Moskva, 1951), Section 25, in Russian; L. D. Landau and E. M. Lifshits, Elektrodinamika Sploshnykh Sred (Izd. Tekh.-Teor. Lit., Moskva, 1957), Sections 12 and 15, in Russian.

    Google Scholar 

  7. H. S. Frank, J. Chem. Phys. 23, 2023 (1955).

    Google Scholar 

  8. G. J. F. Böttcher, O. C. Van Belle, P. Bordevijk, and A. Rip, Theory of Electric Polarization, 2nd revised edn., Vol. 1 (Elsevier, Amsterdam, 1973).

    Google Scholar 

  9. A. Brodsky, Chem. Phys. Lett. 261, 563 (1996).

    Google Scholar 

  10. In-Chul Yeh and M. L. Berkowitz, J. Chem. Phys. 112, 10491 (2000).

    Google Scholar 

  11. Jin-Kee Hyun and T. Ichiye, J. Chem. Phys. 109, 1074 (1998).

    Google Scholar 

  12. Jin-Kee Hyun and T. Ichiye, J. Phys. Chem. B 101, 3596 (1997).

    Google Scholar 

  13. M. F. Toney, J. N. Howard, J. Richer, G. L. Borges, J. G. Gordon, O. R. Melroy, D. G. Wiesler, D. Yee, and L. B. Sorensen, Nature (London) 368, 444 (1994).

    Google Scholar 

  14. I. Danielewicz-Ferchmin and A. R. Ferchmin, J. Phys. Chem. 100, 17281 (1996).

    Google Scholar 

  15. I. Danielewicz-Ferchmin and A. R. Ferchmin, J. Chem. Phys. 109, 2394 (1998).

    Google Scholar 

  16. I. Danielewicz-Ferchmin and A. R. Ferchmin, Physica B 245, 34 (1998).

    Google Scholar 

  17. S. Kielich, Dielectric and Related Molecular Processes, Vol. 1, Chapter 7, M. Davies, Senior Reporter (Chemical Society, Burlington House, London, 1972).

    Google Scholar 

  18. I. Danielewicz-Ferchmin, J. Phys. Chem. 99, 5658 (1995).

    Google Scholar 

  19. . B. P. Nikol'skiy, ed., Spravochnik Khimika, Vol. 1, 3rd corrected edn. (Izd. Khimiya, Leningrad, 1971), p. 1029 (in Russian).

    Google Scholar 

  20. D. Eisenberg and W. Kauzmann, Structure and Properties of Water (Oxford University Press, London, 1969).

    Google Scholar 

  21. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1966), Chap. 14.

    Google Scholar 

  22. R. C. Weast, ed., Handbook of Chemistry and Physics, 67th edn. (CRC Press, Boca Raton, FL, 1986-1987).

    Google Scholar 

  23. Y. Marcus, Chem. Rev. 88, 1475 (1988).

    Google Scholar 

  24. K. Schäfer, ed., Landolt-Börnstein Numerical Data and Functional Relationships [NS], Vol. 2 (Springer, Berlin, 1976).

    Google Scholar 

  25. H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).

    Google Scholar 

  26. A. Habenschuss and F. Spedding, J. Chem. Phys. 70, 3758 (1979).

    Google Scholar 

  27. A. Habenschuss and F. Spedding, J. Chem. Phys. 73, 442 (1980).

    Google Scholar 

  28. S. Romanowski, W. Stasiak, and L. Wojtczak, Electrochim. Acta 27, 511 (1982).

    Google Scholar 

  29. T. Kaneyoshi, Progr. Theoret. Phys. 41, 577 (1969).

    Google Scholar 

  30. T. Kaneyoshi, Progr. Theoret. Phys. 45, 1340 (1971).

    Google Scholar 

  31. D. E. Logan, Y. H. Szczech, and M. A. Tusch, Europhys. Lett. 30, 307 (1995).

    Google Scholar 

  32. G. Hummer, L. R. Pratt, and A. E. García, J. Phys. Chem. 100, 1206 (1996).

    Google Scholar 

  33. C. Satheesan Babu and Carmay Lim, J. Chem. Phys. 114, 889 (2001).

    Google Scholar 

  34. Jin-Kee Hyun, C. Satheesan Babu, and T. Ichiye, J. Phys. Chem. 99, 5187 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielewicz-Ferchmin, I., Ferchmin, A.R. Ion Hydration and Large Electrocaloric Effect. Journal of Solution Chemistry 31, 81–96 (2002). https://doi.org/10.1023/A:1014861203174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014861203174

Navigation