Skip to main content
Log in

Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Vgt1 (Vegetative to generative transition 1) is a quantitative trait locus (QTL) for flowering time in maize (Zea mays L.). Vgt1 was initially mapped in a ca. 5-cM interval on chromosome bin 8.05, using a set of near-isogenic lines (NILs) in the genetic background of the late dent line N28, with the earliness allele introgressed from the early variety Gaspé Flint. A new large mapping population was produced by crossing N28 and one early NIL with a ca. 6-cM long Gaspé Flint introgression at the Vgt1 region. Using PCR-based assays at markers flanking Vgt1, 69 segmental NILs homozygous for independent crossovers near the QTL were developed. When the NILs were tested in replicated field trials for days to pollen shed (DPS) and plant node number (ND), the QTL followed a Mendelian segregation. Using bulk segregant analysis and AFLP profiling, 17 AFLP markers linked to the QTL region were identified. Statistical analysis indicated a substantial coincidence of the effects of Vgt1 on both DPS and ND. Vgt1 was mapped at ca. 0.3 cM from an AFLP marker. As compared to DPS, the higher heritability of ND allowed for a more accurate assessment of the effects of Vgt1. The feasibility of the positional cloning of Vgt1 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, S. and Tanksley, S. D. 1993. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA 90: 7980-7984.

    Google Scholar 

  • Allard, R.W. 1956. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24: 235-278.

    Google Scholar 

  • Alonso-Blanco, C., El-Assal, S.E., Coupland, G. and Koornneef, M. 1998. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149: 749-764.

    Google Scholar 

  • Alpert, K.B., Grandillo, S. and Tanksley, S.D., 1995. fw 2.2: amajor QTL controlling fruit weight is common to both red-and greenfruited tomato species. Theor. Appl. Genet. 91: 994-1000.

    Google Scholar 

  • Araki, T. 2001. Transition from vegetative to reproductive phase. Curr. Opin. Plant Biol. 4: 63-68.

    Google Scholar 

  • Austin, D.F. and Lee, M. 1996. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome 39: 957-968.

    Google Scholar 

  • Bassam, B.J., Caetano-Anolles, G. and Gresshoff, P.M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83.

    Google Scholar 

  • Bickmore, W.A. and Bird, A.P. 1992. Use of restriction endonucleases to detect and isolate genes from mammalian cells. Meth. Enzymol. 216: 224-244.

    Google Scholar 

  • Brawn, R.I., 1968. Breeding corn for earliness. Proc. Ann. Corn Sorghum Res. Conf. 23: 59-66.

    Google Scholar 

  • Churchill, G.A and Doerge, R.W. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.

    Google Scholar 

  • Civardi, L., Xia, Y., Edwards, K.J., Schnable, P.S. and Nikolau, B.J. 1994. The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc. Natl. Acad. Sci. USA 91: 8268-8272.

    Google Scholar 

  • Cnops, G., de Boer, B., Gerats, A., Van Montagu, M. and Van Lijsebettens M. 1996. Chromosome landing at the Arabidopsis TORNADO1 locus using an AFLP-based strategy. Mol. Gen. Genet. 253: 32-41.

    Google Scholar 

  • Colasanti, J., Yuan, Z. and Sundaresan, V. 1998. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93: 593-603.

    Google Scholar 

  • Cross, H.Z. and Zuber, M.S. 1972. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 64: 351-355.

    Google Scholar 

  • Doebley, J., Stec, A. and Gustus, C. 1995. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141: 333-346.

    Google Scholar 

  • Dooner, H.K., Martinez-Ferez, I.M. 1997. Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9: 1633-1646.

    Google Scholar 

  • Frary, A., Nesbitt, T.C., Grandillo, S., Knaap, E., Cong, B., Liu, J., Meller, J., Elber, R., Alpert, K.B. and Tanksley, S.D. 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85-88.

    Google Scholar 

  • Fridman, E., Pleban, T. and Zamir, D. 2000. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97: 4718-4723.

    Google Scholar 

  • Gerdes, J.T., Behr, C.F., Coors, J.G. and Tracy, W.F. 1993. Compilation of North American Maize Breeding Germplasm. Crop Science Society of America, Madison, WI.

    Google Scholar 

  • Graham, G.I., Wolff, S.W. and Stuber, C.W. 1997. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci. 37: 1601-1610.

    Google Scholar 

  • Haldane, J.B.S. 1919. The combination of linkage values, and the calculation of distance between the loci of linked factors. J. Genet. 8: 299-309.

    Google Scholar 

  • Hay, R.K.M. and Ellis, R.P. 1998. The control of flowering in wheat and barley: what recent advances in molecular genetics can reveal. Ann. Bot. 82: 541-554.

    Google Scholar 

  • Jansen, R.C. 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211.

    Google Scholar 

  • Jiang, C., Edmeades, G.O., Armstead, I., Lafitte, H.R., Hayward, M.D. and Hoisington, D. 1999. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor. Appl. Genet. 99: 1106-1119.

    Google Scholar 

  • Keller, B. and Feuillet, C. 2000. Colinearity and gene density in grass genomes. Trends Plant Sci. 5: 246-251.

    Google Scholar 

  • Kim, T.S. 1992. Identification of genomic regions controlling maturity in maize (Zea mays L.). Ph.D. Thesis, University of Minnesota, St. Paul, MN.

    Google Scholar 

  • Konieczny, A. and Ausebel, F.M. 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4: 403-410.

    Google Scholar 

  • Kraja, A.T. and Dudley, J.W. 2000. QTL analysis of two maize inbred line crosses. Maydica 45: 1-12.

    Google Scholar 

  • Lander, E.S. and Botstein, D. 1989. Mapping mendelian factors underlying quantitative traits using RFLPs linkage maps. Genetics 121:185-199.

    Google Scholar 

  • Laurie, D.A. 1997. Comparative genetics of flowering time. Plant Mol. Biol. 35: 167-177.

    Google Scholar 

  • Legare, M.E., Bartlett, F.S. and Frankel, W.N. 2000. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10: 42-48.

    Google Scholar 

  • Leng, E.R. 1951. Time relationships in tassel development in inbred and hybrid corn. Agron. J. 43: 445-449.

    Google Scholar 

  • Lin, Y.-R., Schertz, K. F. and Paterson, A. 1995. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141: 391-411.

    Google Scholar 

  • Nei, M. and Lee, W.-H. 1979. Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc. Natl. Acad. Sci. USA 76: 5269-5273.

    Google Scholar 

  • Neuffer, M.G., Coe, E.H. and Wessler, S.R. 1997. Mutants of maize. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Pasyukova, E.G., Vieira, C. and Mackay, T.F.C. 2000. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics 156: 1129-1146.

    Google Scholar 

  • Paterson, A.H., De Verna, J.W., Lanini, B. and Tanksley, S.D. 1990. Fine mapping of quantitative trait loci using selected overlapping chromosomes, in an interspecific cross of tomato. Genetics 124: 735-742.

    Google Scholar 

  • Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E. and Tanksley, S.D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature 335: 721-726.

    Google Scholar 

  • Pedersen, C. and Linde-Laursen, I. 1995. The relationship between physical and genetic distance at the Hor1 and Hor2 loci of barley estimated by two colour fluorescent in situ hybridization. Theor. Appl. Genet. 91: 941-946.

    Google Scholar 

  • Phillips, R.L., Kim, T.S., Kaeppler, S.M., Parentoni, S.N., Shaver, D.L., Stucker, R.I. and Openshaw, S.J. 1992. Genetic dissection of maturity using RFLPs. Proc. Ann. Corn and Sorghum Res. Conf. 47: 135-150.

    Google Scholar 

  • Robertson, D.S. 1985. A possible technique for isolating genic DNA for quantitative traits in plants. J. Theor. Biol. 117: 1-10.

    Google Scholar 

  • Russel, W.K. and Stuber, C.W. 1983. Effects of photoperiod and temperatures on the duration of vegetative growth in maize. Crop Sci. 23: 847-850.

    Google Scholar 

  • Saghai-Maroof, M.A., Soliman, K.M., Jorgesen, R.A. and Allard R.W. 1984. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014-8018.

    Google Scholar 

  • Salvi, S., Tuberosa, R. and Phillips, R.L. 2001. Development of PCR-based assays for allelic discrimination in maize, by using the 5'-nuclease procedure. Mol. Breed, 8: 169-176.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Simons, G., van der Lee, T., Diergaarde, P., van Daelen, R., Groenendijk, J., Frijters, A., Buschges, R., Hollricher, K., Topsch, S., Schulze-Lefert, P., Salamini, F., Zabeau, M. and Vos, P. 1997. AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics 44: 61-70.

    Google Scholar 

  • Simpson, GG., Gendall, A.R. and Dean, C. 1999. When to switch to flowering. Ann. Rev. Cell. Dev. Biol. 99: 519-550.

    Google Scholar 

  • Sommer, S.S., Groszbach, A.R. and Bottema, C.D.K. 1992. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes. Biotechniques 12: 82-87.

    Google Scholar 

  • Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B. 2000. Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.) Proc. Natl. Acad. Sci. USA. 97: 13436-13441.

    Google Scholar 

  • Tanksley, S.D., Ganal, M.W. and Martin, G.B. 1995. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 11: 63-68.

    Google Scholar 

  • Thoday, J.M. 1961. Location of polygenes. Nature 191: 368-370.

    Google Scholar 

  • Tikhonov, A.P., SanMiguel P.J., Nakajima, Y., Gorenstein, N.M., Bennetzen, J.L. and Avramova, Z. 1999. Colinearity and its exceptions in orthologous ADH regions of maize and sorghum. Proc. Natl. Acad. Sci. USA. 96: 7409-7414.

    Google Scholar 

  • Timmermans, M.C., Das, O.P. and Messing, J. 1996. Characterization of a meiotic crossover in maize identified by a restriction fragment length polymorphism-based method. Genetics 143: 1771-1783.

    Google Scholar 

  • Tuberosa, R., Salvi, S., Sanguineti, M.C., Landi, P., Conti, S., Frascaroli, E. and Noli, E. 1997. Identification of QTLs for leaf abscisic acid concentration and agronomic traits in droughtstressed maize. Plant and Animal Genome Conference, San Diego, USA, W5.

  • Vladutu, C., McLaughlin J. and Phillips R.L. 1999. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics 153: 993-1007.

    Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 11: 4407-4414.

    Google Scholar 

  • Wang, R.-L., Stec, A., Hey, J., Lukens, L. and Doebley, J. 1999. The limits of selection during maize domestication. Nature 398: 236-239.

    Google Scholar 

  • Wehrhahn, C. and Allard, R.W., 1965. The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative trait in wheat. Genetics 51: 109-119.

    Google Scholar 

  • Wei, F., Gobelman-Werner, K., Morroll, S.M., Kurth, J., Mao, L., Wing, R., Leister, D., Schulze-Lefert, P. and Wise, R.P. 1999. TheMla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153: 1929-1948.

    Google Scholar 

  • Yamamoto, T., Kuboki, Y., Lin, S.Y., Sasaki, T. and Yano, M. 1998. Fine mapping of quantitative trait loci, Hd-1, Hd-2 and Hd-3, controlling heading date of rice as single Mendelian factors. Theor. Appl. Genet. 97: 37-44.

    Google Scholar 

  • Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y. and Sasaki, T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473-2484.

    Google Scholar 

  • Yu, X.G., Bush, A.L. and Wise, R. 1996. Comparative mapping of homoeologous group 1 regions and genes for resistance to obligate biotrophs in Avena, Hordeum, and Zea mays. Genome 39: 155-164.

    Google Scholar 

  • Zamir D. and Eshed, Y. 1998. In: A.H. Paterson (Ed.) Molecular Dissection of Complex Traits, CRC, Boca Raton, FL, pp. 207-217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvi, S., Tuberosa, R., Chiapparino, E. et al. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48, 601–613 (2002). https://doi.org/10.1023/A:1014838024509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014838024509

Navigation