Skip to main content
Log in

Derivatives of Benzotetrazine-1,3-dioxide Are New NO-donors, Activators of Soluble Guanylate Cyclase, and Inhibitors of Platelet Aggregation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The ability of 5-nitro-, 7-nitro-, and 5,7-dinitrobenzotetrazine-1,3-dioxides to generate nitric oxide (NO) and activate soluble guanylate cyclase was investigated. All of these compounds were found to be thiol dependent NO-donors and guanylate cyclase activators. The maximal stimulatory effect of 5-nitro-, 7-nitro-, and 5,7-dinitrobenzotetrazine-1,3-dioxides was observed at 10 μM concentration and the activity increase was 4.5-, 15.0-, and 8.2-fold in the presence of 20 μM dithiothreitol and 11.3-, 31.6-, and 20.5-fold, respectively, in the presence of added glutathione (100 μM). The NO-dependent mechanism of benzotetrazine-1,3-dioxide nitroderivative-induced activation of soluble guanylate cyclase (in the presence of 100 μM glutathione) was confirmed by the inhibition (by 78%) of 7-nitrobenzotetrazine-1,3-dioxide (10 μM)-stimulated guanylate cyclase activity in the presence of the NO-scavenger-2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (Carboxy-PTIO, 50 μM) and by the inhibition with 1H-[1,2,4 ]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 0.3 μM) of 5-nitro-, 7-nitro-, and 5,7-dinitrobenzotetrazine-1,3-dioxides (10 μM)-stimulated guanylate cyclase by 34, 69, and 39%, respectively. All compounds used inhibited ADP-induced aggregation of human platelets with IC 50 of 10.0, 1.3, and 2.0 μM for 5-nitro-, 7-nitro-, and 5,7-dinitrobenzotetrazine-1,3-dioxides, respectively. A clearly defined correlation was established between the ability of the compounds to generate NO, activate soluble guanylate cyclase, and inhibit platelet aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kerwin, J. F., Jr., Lancaster, J. R., Jr., and Feldman, P. L. (1995) J. Med. Chem., 38, 4343-4362.

    PubMed  Google Scholar 

  2. Palmer, R. M. J., Ashton, D. S., and Moncada, S. (1988) Nature, 333, 664-666.

    Article  PubMed  Google Scholar 

  3. Murad, F. (1994) Adv. Pharmacol., 26, 19-35.

    PubMed  Google Scholar 

  4. Craven, P., and De-Rubertis, F. (1983) Biochim. Biophys. Acta, 745, 310-321.

    PubMed  Google Scholar 

  5. Massberg, S., Sausbier, M., Klatt, P., Bauer, M., Pfeifer, A., Siess, W., Fassler, R., Ruth, P., Krombach, F., and Hoffmann, F. (1999) J. Exp. Med., 189, 1255-1264.

    PubMed  Google Scholar 

  6. Waldmann, R., and Walter, U. (1989) Eur. J. Pharmacol., 159, 317-320.

    PubMed  Google Scholar 

  7. Walter, U., Eigenthaler, M., Geiger, J., and Reinhard, M. (1993) Adv. Exp. Med. Biol., 344, 237-249.

    PubMed  Google Scholar 

  8. El-Daher, S. S., Eigenthaler, M., Walter, U., Furuichi, T., Miyawaki, A., Mikoshiba, K., Kakkar, V. V., and Authi, K. S. (1996) Thromb. Haemost., 76, 1063-1071.

    PubMed  Google Scholar 

  9. Bassenge, E., Fink, N., Skatchkov, M., and Fink, B. (1998) J. Clin. Invest., 102, 67-71.

    PubMed  Google Scholar 

  10. Volodarsky, L. B., and Tikhonova, L. A. (1985) Khim. Geterotsikl. Soedin., No. 6, 748-752.

  11. Kirilyuk, I. A., Utepbergenov, D. I., Mazhukin, D. G., Fechner, K., Mertsch, K., Khramtsov, V. V., Blasg, I. E., and Haseloff, R. F. (1998) J. Med. Chem., 41, 1027-1033.

    PubMed  Google Scholar 

  12. Ryaposova, I. K., Grigoryev, N. B., and Severina, I. S. (1994) Biochemistry (Moscow), 59, 389-392.

    Google Scholar 

  13. Severina, I. S., Belushkina, N. N., and Grigoryev, N. B. (1994) Biochem. Mol. Biol. Int., 33, 957-967.

    PubMed  Google Scholar 

  14. Kotz, A. Ya., Grafov, M. A., Khropov, Y. V., Betin, V. L., Belushkina, N. N., Bussygina, O. G., Yazykova, M. Y., Ovchinnikov, I. V., Kulikov, A. S., Makhova, N. N., Medvedeva, N. A., Bulargina, T. V., and Severina, I. S. (2000) Br. J. Pharmacol., 129, 1163-1177.

    PubMed  Google Scholar 

  15. Zeman, E. M., Baker, M. A., Lemmon, M. J., Pearson, C. I., Adams, J. A., Brown, J. M., Lee, W. W., and Tracy, M. (1989) Int. J. Radiat. Oncol. Biol. Phys., 16, 977-981.

    PubMed  Google Scholar 

  16. Churakov, A. M., Ioffe, S. L., and Tartakovsky, V. A. (1991) Mend. Commun., 101-103.

  17. Kurbanov, I. S., Mordvinzev, P. I., Aliev, D. I., and Vanin, A. F. (1989) Vopr. Med. Khim., 35, 87-91.

    Google Scholar 

  18. Mikoyan, V. D., Kubrina, L. N., Serezhenkov, V. A., Stukan, R. A., and Vanin, A. F. (1997) Biochim. Biophys. Acta, 1336, 225-234.

    PubMed  Google Scholar 

  19. Chirkov, Yu. Yu., Tyshchuk, I. A., Belushkina, N. N., and Severina, I. S. (1987) Biokhimiya, 52, 956-963.

    Google Scholar 

  20. Garbers, D. L., and Murad, F. (1979) Adv. Cycl. Nucl. Res., 10, 57-67.

    Google Scholar 

  21. Bradford, H. M. (1976) Analyt. Biochem., 72, 248-254.

    Article  PubMed  Google Scholar 

  22. Born, G. V. R. (1962) Nature, 194, 927-929.

    PubMed  Google Scholar 

  23. Akaike, T., Yoshida, M., Miyamoto, Y., Sato, K., Kohno, M., Sasamoto, K., Miyzaki, K., Ueda, S., and Maeda, H. (1993) Biochemistry, 32, 827-832.

    PubMed  Google Scholar 

  24. Garthwaite, J., Southam, E., Boulton, C. L., Schmidt, K., and Mayer, B. (1995) Mol. Pharmacol., 48, 184-198.

    PubMed  Google Scholar 

  25. Zhao, Y., Brandish, P. E., Divalentin, M., Schelvis, J. P. M., Babcook, G. T., and Marletta, M. A. (2000) Biochemistry, 39, 10848-10854.

    PubMed  Google Scholar 

  26. Moro, M. A., Rassel, R. J., Cellek, S., Lizasoain, I., Su, Y., Darley-Usmar, V. M., Radomski, M. W., and Moncada, S. (1996) Proc. Natl. Acad. Sci. USA, 93, 1480-1485.

    PubMed  Google Scholar 

  27. Mellion, B. T., Ignarro, L. J., Ohlstein, E. H., Pontecorvo, E. G., Hyman, A. L., and Kadowitz, P. J. (1981) Blood, 57, 946-955.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyatakova, N.V., Khropov, Y.V., Churakov, A.M. et al. Derivatives of Benzotetrazine-1,3-dioxide Are New NO-donors, Activators of Soluble Guanylate Cyclase, and Inhibitors of Platelet Aggregation. Biochemistry (Moscow) 67, 329–334 (2002). https://doi.org/10.1023/A:1014836516982

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014836516982

Navigation