Advertisement

Russian Journal of Plant Physiology

, Volume 49, Issue 2, pp 235–241 | Cite as

The Effect of Selenite Ions on Growth and Selenium Accumulation in Spirulina platensis

  • N. A. Pronina
  • Yu. I. Kovshova
  • V. V. Popova
  • A. B. Lapin
  • S. G. Alekseeva
  • R. F. Baum
  • I. M. Mishina
  • L. N. Tsoglin
Article

Abstract

Selenium accumulation and the growth of cyanobacterium Spirulina platensis (Nordst.) Geitl. were studied in a culture with sodium selenite-supplemented nutritional medium. Selenite concentrations below 20 mg/l did not inhibit the growth of S. platensis. The addition of 30 mg/l of this salt somewhat decreased the growth rate during the linear growth phase, induced the earlier suspension transition to the steady-state phase, and substantially lowered the highest optical density of the suspension. However, even at 170 mg/l Na2SeO3, the culture still demonstrated a capacity for growth. The content of selenium in the cells depended directly on its concentration in the medium, up to the lethal level. At high selenium concentrations (100–170 mg/l), S. platensis reduced Se(IV) up to Se(0). The latter was secreted onto the cell surface and into the cultural medium. The high concentrations of Na2SeO3 acidified the cytoplasmic pH as was measured by 31P-NMR spectroscopy. At the same time, the content of protein on a dry weight basis decreased and that of carbohydrates and lipids somewhat increased, just as was observed in S. platensis cells under other stress factors. In the presence of 20 mg/l Na2SeO3, the selenium content in the biomass increased by 20 000 times as compared to that in the control cells, whereas the biochemical composition of biomass did not change. In this case, the selenium was incorporated almost completely in the protein fraction. The selenium concentration in this fraction increased more significantly when the sulfur content was lowered in the medium.

Spirulina platensis growth sodium selenite selenium accumulation sulfur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Richmond, A., Microalgae of Economic Potential, Handbook of Microalgal Mass Culture, Richmond, A., Ed., Boca Raton: CRC, 1986, pp. 199-244.Google Scholar
  2. 2.
    Borowitzka, M.A. and Borowitzka, L.J., Dunaliella, Micro-Algal Biotechnology, Borowitzka, M.A. and Borowitzka, L.J., Eds., Cambridge: Cambridge Univ. Press, 1988, pp. 27-59.Google Scholar
  3. 3.
    Tsoglin, L.N. and Gabel', B.V., Potential Productivity of Microalgae in Industrial Photobioreactor, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 761-767 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  4. 4.
    Trubachev, I.I., Gitelzon, I.I., Kalacheva, G.S., Barashkov, V.A., Belyanin, V.I., and Andreeva, V.I., Biochemical Composition of Blue-Green Algae and Chlorella, Prikl. Biokhim. Mikrobiol., 1976, vol. 12, pp. 200-208.Google Scholar
  5. 5.
    Klyachko-Gurvich, G.L., On Directed Biosynthesis of Proteins, Carbohydrates, and Lipids in Chlorella Cells, Upravlyaemyi biosintez (Directed Biosynthesis), Ierusalimskii, N.D. and Kovrov, B.G., Eds., Moscow: Nauka, 1966, pp. 116-121.Google Scholar
  6. 6.
    Semenenko, V.E., Self-Regulation of Physiological Functions and Monitoring of the Biosynthesis of Photosynthesizing Cells, Novye napravleniya v fiziologii rastenii (New Trends in Plant Physiology), Kursanov, A.L., Ed., Moscow: Nauka, 1985, pp. 85-104.Google Scholar
  7. 7.
    Tambiev, A.Kh., Kirikova, N.N., Mazo, V.K., and Skal'nyi, A.V., Method for Production of Selenium-Containing Preparation from Spirulina Biomass, Patent RF 2096037, class A 61 K 33/04, 1998.Google Scholar
  8. 8.
    Varga, L., Sziget, J., and Ordog, V., Effect of Spirulina platensis Biomass Enriched with Trace Elements on Combinations of Starter Culture Strains Employed in the Dairy Industry, Michwissenschaft, 1999, vol. 54, pp. 247-248.Google Scholar
  9. 9.
    Minyuk, G.M., Trenkenshu, R.P., Alisevich, A.V., and Drobetskaya, I.V., Selenium Effect on the Growth of Microalga Spirulina platensis (Nordst.) Grown as Batch and Quasicontinuous Cultures, Ekologiya Morya, 2000, vol. 54, pp. 42-49.Google Scholar
  10. 10.
    Mazo, V.K., Gmoshinskii, I.V., Tambiev, A.Kh., Kirik-ova, N.N., and Golubkina, N.A., The Effect of Biologically Active Food Supplements Enriched in Available Selenium on the Development of Systemic Anaphylaxis in Rats, Biotechnologiya, 1997, nos. 9-10, pp. 45-48.Google Scholar
  11. 11.
    Reshetnik, L.A. and Parfenova, E.O., Selenium and Human Health (Review of the Literature Data), Ekologiya Morya, 2000, vol. 54, pp. 20-25.Google Scholar
  12. 12.
    Golubkina, N.A., Shagova, M.V., Baturin, A.K., and Khotimchenko, S.A., The Selenium Providing of Inhabitants in Altai Region, Vopr. Pitaniya, 1998, no. 5-6, pp. 16-18.Google Scholar
  13. 13.
    Golubkina, N.A., The Role of Medicine Plant in the Formation of Selenium Status of Russia Population, Doctoral (Agric.) Dissertation, Moscow: Timiryazev Agric. Acad., 1999.Google Scholar
  14. 14.
    Wheeller, A.E., Zingaro, R.A., and Irgolic, K., The Effect of Selenate, Selenite, and Sulfate on the Growth of Six Unicellular Marine Algae, J. Exp. Mar. Biol. Ecol., 1982, vol. 5, pp. 181-194.Google Scholar
  15. 15.
    Wehr, J.D. and Brown, L.M., Selenium Requirement of Bloom-Forming Planktonic Algae from Softwater and Acidified Lakes, Can. J. Fish. Aquat. Sci., 1985, vol. 42, pp. 1983-1997.Google Scholar
  16. 16.
    Riedel, G.F., Sanders, J.G., and Gilmour, C.C., Uptake, Transformation, and Impact of Selenium in Freshwater Phytoplankton and Bacterioplankton Communities, Aquat. Microbiol. Ecol., 1996, vol. 11, pp. 43-51.Google Scholar
  17. 17.
    Katalog kul'tur mikrovodoroslei v kollektsiyakh SSSR (Catalogue of Microalgal Cultures in the Collection of USSR), Semenenko, V.E., Ed., Moscow: Inst. Fiziol. Rast. Ross. Akad. Nauk, 1991.Google Scholar
  18. 18.
    Sharenkova, Kh. and Semenenko, V.E., Characteristics of Photosynthetic Oxygen Evolution by Spirulina platensis (Gom.) Geitl., Fiziol. Rast. (Moscow), 1982, vol. 29, pp. 572-571 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  19. 19.
    Lowry, D., Rosebrough, N., Farr, A., and Randal, R., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265-275.Google Scholar
  20. 20.
    Sergeenko, T.V., Muradyan, E.A., Pronina, N.A., Kly-achko-Gurvich, G.L., Mishina, I.M., and Tsoglin, L.N., The Effect of Extremely High CO2 Concentration on the Growth and Biochemical Composition of Microalgae, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 722-729 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  21. 21.
    Klyachko-Gurvich, G.L., Directed Biosynthesis of Carbohydrates in Chlorella, Fiziol. Rast. (Moscow), 1964, vol. 11, pp. 978-987 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  22. 22.
    The Methods of Protein and Amino Acid Analysis in Plants, Metodicheskie ukazaniya (Methodological Recommendations), Konarev, V.G., Ed., Leningrad: Vses. Nauch.-Issled. Inst. Rastenievodstva, 1973.Google Scholar
  23. 23.
    Roberts, J.K.M., Study of Plant Metabolism in vivo Using NMR Spectroscopy, Annu. Rev. Plant Physiol., 1984, vol. 35, pp. 375-386.Google Scholar
  24. 24.
    Kichitsu, K., Katsuhara, M., and Miyachi, S., Rapid Cytoplasmic Alkalization and Dynamics of Intracellular Compartmentation of Inorganic Phosphate during Adaptation against Salt Stress in a Halotolerant Unicellular Green Alga Dunaliella tertiolecta: 31 P-Nuclear Magnetic Resonance Study, Plant Cell Physiol., 1989, vol. 30, pp. 407-414.Google Scholar
  25. 25.
    Handbook of Inductive Coupled Plasma Mass-Spectrometry, Javis, K.E., Grey, A.L., and Houk, R.S., Eds., New York: Chapmen and Hall, 1992.Google Scholar
  26. 26.
    Golubkina, N.A., Fluorometric Method of Selenium Determination, Zh. Anal. Khim., 1995, vol. 50, pp. 492-497.Google Scholar
  27. 27.
    Upitis, V.V., Makro-i mikroelementy v optimizatsii mineral'nogo pitaniya mikrovodoroslei (Macro-and Micro-nutrients at the Optimization of Mineral Nutrition), Riga: Zinatne, 1983.Google Scholar
  28. 28.
    Koval'skii, V.V., Geokhimicheskaya ekologiya (Geochemical Ecology), Moscow: Nauka, 1974.Google Scholar
  29. 29.
    Minyuk, G.S. and Drobetskaya, I.V., The Effect of Selenium on the Life of Marine and Freshwater Microalgae (Review), Ekologiya, morya, 2000, vol. 54, pp. 26-37.Google Scholar
  30. 30.
    Bottino, N.R., Banks, C.H., and Irgolic, K.J., Selenium-Containing Amino Acids and Protein in Marine Algae, Phytochemistry, 1984, vol. 23, pp. 2445-2452.Google Scholar
  31. 31.
    Vandermeulen, J.H. and Foda, A., Cycling of Selenite and Selenate in Marine Phytoplankton, Mar. Biol., 1988, vol. 98, pp. 115-123.Google Scholar
  32. 32.
    Shrift, A., Sulfur-Selenium Antagonism: 1. Antimetabolite Action of Selenate on Growth of Chlorella vulgaris, Am. J. Bot., 1954, vol. 41, pp. 223-230.Google Scholar
  33. 33.
    Trenkenshu, R.P. and Drobetskaya, I.V., The Effect of Sulfur and Selenium Antagonism on the Growth and Biochemical Parameters of Spirullina, Ekologiya Morya, 2000, vol. 54, pp. 50-56.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • N. A. Pronina
    • 1
  • Yu. I. Kovshova
    • 1
  • V. V. Popova
    • 1
  • A. B. Lapin
    • 2
  • S. G. Alekseeva
    • 2
  • R. F. Baum
    • 3
  • I. M. Mishina
    • 2
  • L. N. Tsoglin
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov State Academy of Fine Chemical TechnologyMoscow
  3. 3.Joint Stock Company “Spetsial'noe mashinostroenie i metalurgiya plus,”Moscow

Personalised recommendations