Skip to main content
Log in

Dielectric Study of the Miscibility of Binary Liquids, One Being an Alcohol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A dielectric relaxation study has been made over a frequency range of 106–10−3 Hz in the supercooled liquid state of the binary mixtures of 2-ethyl-1-hexanol (2EHOH) with a wide variety of common liquids. Differential scanning calorimetry measurements have also been made above 100 K. Our studies show compatibility of the methylcyclohexane with 2EHOH over the entire composition range. However, in the case of 1-bromobutane and acetone with 2EHOH, we have clearly seen two liquidlike phases separating out, which indicates incompatibility. In the case of 4-methyl-2-pentanol, the binary liquid shows no heterogeneity over most of the concentration range. In the case of methyl alcohol (MOH), the binary liquid shows some heterogeneity at a molecular level in the MOH-rich region. An attempt has been made to understand miscibility in terms of the preference for ring and chain formation among the alcohol molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. E. Hill, W. E. Vaughan, A. H. Price, and M. Davies, Dielectric Properties and Molecular Behaviour (Van Nostrand Reinhold, London, 1969).

    Google Scholar 

  2. D. J. Denney and R. H. Cole, J. Chem. Phys. 23, 1767 (1955).

    Google Scholar 

  3. D. J. Denney and J. W. Ring, J. Chem. Phys. 19, 1268 (1963).

    Google Scholar 

  4. P. Daumezon and R. Heitz, J. Chem. Phys. 55, 5704 (1971).

    Google Scholar 

  5. P. Sixou, P. Dansas, and D. Gillot, J. Chim. Phys. 64, 834 (1967).

    Google Scholar 

  6. P. Sixou, P. Daumezon, and P. Dansas, J. Chim. Phys. 64, 824 (1967).

    Google Scholar 

  7. B. Gestblom, A. El Samahy, and J. Sjoblom, J. Solution Chem. 14, 375 (1985).

    Google Scholar 

  8. M. K. Kroeger, J. Mol. Liquids 36, 101 (1987).

    Google Scholar 

  9. F. F. Hanna, I. K. Hakima, A. L. C. Saad, F. Hufnagel, and F. Drexler, J. Mol. Liquids 49, 49 (1991).

    Google Scholar 

  10. O. E. Kalinovskaya and J. K. Vij, J. Chem. Phys. 111, 10979 (1999).

    Google Scholar 

  11. G. P. Johari and C. P. Smyth, J. Chem. Phys. 56, 4411 (1972).

    Google Scholar 

  12. M. F. Shears and G. Williams, J. Chem. Soc. Far. Trans. 2 69, 608 (1973).

    Google Scholar 

  13. G. J. Peid and M. W. Evans, J. Chem. Phys. 76, 2576 (1982).

    Google Scholar 

  14. S. S. N. Murthy, N. Arya, and A. Paikaray, J. Chem. Phys. 102, 8213 (1995).

    Google Scholar 

  15. S. S. N. Murthy, J. Mol. Liquids 51, 197 (1992).

    Google Scholar 

  16. J. A. Monick, Alcohols: Their Chemistry, Properties and Manufacturers (Renhold, New York, 1968).

    Google Scholar 

  17. D. R. Lide, CRC Handbook of Physics and Chemistry, 71st. edn. (CRC Press, Boca Raton, FL, 1990).

    Google Scholar 

  18. S. S. N. Murthy, Mol. Phys. 87, 691 (1996).

    Google Scholar 

  19. O. E. Kalinovskaya and J. K. Vij, J. Chem. Phys. 112, 3262 (2000).

    Google Scholar 

  20. W. Dannhauser, L. W. Bahe, R. Y. Lin, and A. F. Flueckinger, J. Chem. Phys. 43, 257 (1965).

    Google Scholar 

  21. S. S. N. Murthy and S. K. Nayak, J. Chem. Phys. 99, 5362 (1993).

    Google Scholar 

  22. C. J. Hickman and P. M. Goode, Nature (London) 172, 212 (1953).

    Google Scholar 

  23. S. K. Garg and C. P. Smyth, J. Phys. Chem. 69, 1294 (1965).

    Google Scholar 

  24. S. S. N. Murthy, J. Phys. Chem. 100, 8508 (1996).

    Google Scholar 

  25. F. X. Hassion and R. H. Cole, J. Chem. Phys. 23, 1756 (1955).

    Google Scholar 

  26. B. Schiener and R. Bohmer, J. Noncrystal. Solids 182, 180 (1995).

    Google Scholar 

  27. C. Hansen, F. Stickel, T. Berger, R. Richert, and E. W. Fischer, J. Chem. Phys. 107, 1086 (1997).

    Google Scholar 

  28. A. R. Ubbelohde, Melting and Crystal Structure (Clarendon Press, Oxford, 1985).

    Google Scholar 

  29. A. V. Lesikar, Phys. Chem. Glasses 16, 83 (1975).

    Google Scholar 

  30. A. V. Lesikar, J. Chem. Phys. 66, 4263 (1977).

    Google Scholar 

  31. A. V. Lesikar, J. Chem. Phys. 63, 2297 (1975).

    Google Scholar 

  32. S. S. N. Murthy and Deepak Kumar, J. Chem. Soc. Far. Trans. 89, 2423 (1993).

    Google Scholar 

  33. S. Havriliak and S. Negami, J. Poly. Sci. 14, 99 (1966).

    Google Scholar 

  34. S. S. N. Murthy, J. Sobhanadri, and Gangasharan, J. Chem. Phys. 100, 4601 (1994).

    Google Scholar 

  35. S. S. N. Murthy, Gangasharan, and S. K. Nayak, J. Chem. Soc. Far. Trans. 89, 509 (1993).

    Google Scholar 

  36. J. Crossley, L. Glasser, and C. P. Smyth, J. Chem. Phys. 55, 2197 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, S.S.N., Tyagi, M. Dielectric Study of the Miscibility of Binary Liquids, One Being an Alcohol. Journal of Solution Chemistry 31, 33–58 (2002). https://doi.org/10.1023/A:1014805118195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014805118195

Navigation