Skip to main content
Log in

Theoretical Study of the Mechanism of Nucleophilic Addition of Oximes to trans-[PtCl4(NCCH3)2]

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of nucleophilic addition of oximes to organic nitriles coordinated to platinum was studied by ab initio methods of quantum chemistry using trans-[PtCl4(NCCH3)2] as an example. It was shown that in the absence of acidic or basic catalysis, the reaction proceeds through the formation of an orientation complex and a 4-membered cyclic transition state, whose decomposition yields the product of oxime addition to the C≡N bond. To compare and elucidate the reasons for nitrile activation in these complexes, the mechanism of hypothetical addition of formaldoxime to noncoordinated acetonitrile was studied. Calculated values of activation energy and energy effects of the reactions allow one to interpret the activation of nitriles during complexation in terms of the activated-complex model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kukushkin, Yu.N., Reaktsionnaya sposobnost' koordinatsionnykh soedinenii (Reaction Capacity of Coordination Compounds), Leningrad: Khimiya, 1987.

    Google Scholar 

  2. Kukushkin, Yu.N., Khimiya koordinatsionnykh soedinenii (Chemistry of Coordination Compounds), Moscow: Vysshaya Shkola, 1985.

    Google Scholar 

  3. Kukushkin, V.Yu., Zenkevich, I.G., Belsky, V.K., et al., Inorg. Chim. Acta, 1989, vol. 166, p. 79.

    Google Scholar 

  4. Michelin, R.A., Mozzon, M., and Bertani, R., Coord. Chem. Rev., 1996, vol. 147, p. 299.

    Google Scholar 

  5. Cini, R., Fanizzi, F.P., Intini, F.P., et al., Inorg. Chim. Acta, 1996, vol. 251, nos. 1-2; p. 111.

    Google Scholar 

  6. Cini, R., Fanizzi, F.P., Intini, F.P., et al., Inorg. Chim. Acta, 1997, vol. 264, nos. 1-2, p. 279.

    Google Scholar 

  7. Cini, R., Caputo, P.A., Intini, F.P., and Natile, G., Inorg. Chem., 1995, vol. 34, no. 5, p. 1130.

    Google Scholar 

  8. Ros, R., Renaud, J., and Roulet, R., J. Organomet. Chem., 1976, vol. 104, p. 271.

    Google Scholar 

  9. Kukushkin, Yu.N. and Larionova, Yu.E., Zh. Obshch. Khim., 1994, vol. 64, no. 9, p. 1409.

    Google Scholar 

  10. Ang, H.-G., Koh, C.-H., Koh, L.-L., et al., J. Chem. Soc., Dalton Trans., 1993, no. 6, p. 847.

  11. Cotton, F.A., Daniels, L.M., Murillo, C.A., and Wang, X., Polyhedron, 1998, vol. 17, no. 17, p. 2781.

    Google Scholar 

  12. Cotton, F.A. and Kuhn, F.E., J. Am. Chem. Soc., 1996, vol. 118, no. 24, p. 5826.

    Google Scholar 

  13. Albertin, A., Antoniutti, S., Bacchi, A., et al., Inorg. Chem., 1998, vol. 37, no. 3, p. 479.

    Google Scholar 

  14. Wagner, G., Pombeiro, A.J.L., Bokach, N.A., and Kukushkin, V.Yu., J. Chem. Soc., Dalton Trans., 1999, no. 22, p. 4083.

  15. Kukushkin, V.Yu., Ilichev, I.V., Wagner, G., et al., J. Chem. Soc., Dalton Trans., 1999, no. 17, p. 3047.

  16. Kukushkin, V.Yu., Ilichev, I.V., Zhdanova, M.A., et al., J. Chem. Soc., Dalton Trans., 2000, no. 10, p. 1567.

  17. Fereira, C.M.P., Guedes da Silva, M.F.C., Frausto da Silva, J.J.R., et al., Inorg. Chem., 2001, vol. 40, no. 6, p. 1134.

    Google Scholar 

  18. Panina, N.S. and Kukushkin, Yu.N., Zh. Neorg. Khim., 1998, vol. 43, no. 3, p. 469.

    Google Scholar 

  19. Kuznetsov, M.L., Dement'ev, A.I., Shestakova, O.S., and Kukushkin, V.Yu., Zh. Neorg. Khim., 2001, vol. 46, no. 10, p. 1683.

    Google Scholar 

  20. Kuznetsov, M.L., Bokach, N.A., Kukushkin, V.Yu., et al., J. Chem. Soc., Dalton Trans., 2000, no. 24, p. 4683.

  21. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., et al., J. Comput. Chem., 1993, vol. 14, p. 1347.

    Google Scholar 

  22. Andrae, D., Haeussermann, U., Dolg, M., et al., Theor. Chim. Acta, 1990, vol. 77, p. 123.

    Google Scholar 

  23. Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, no. 2, p. 724.

    Google Scholar 

  24. Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1972, vol. 56, no. 5, p. 2257.

    Google Scholar 

  25. Francl, M.M., Pietro, W.J., Hehre, W.J., et al., J. Chem. Phys., 1982, vol. 77, no. 7, p. 3654.

    Google Scholar 

  26. Fukui, K., Acc. Chem. Res., 1981, vol. 14, no. 12, p. 363.

    Google Scholar 

  27. Gonzalez, C. and Schlegel, H.B., J. Chem. Phys., 1991, vol. 95, no. 8, p. 5853.

    Google Scholar 

  28. Kukushkin, V.Yu., Pakhomova, T.B., Kukushkin Yu., N., et al., Inorg. Chem., 1998, vol. 37, no. 25, p. 6511.

    Google Scholar 

  29. Kukushkin, V.Yu., Pakhomova, T.B., Bokach, N.A., et al., Inorg. Chem., 2000, vol. 39, no. 2, p. 216.

    Google Scholar 

  30. Garnovskii, D.A., Guedes da Silva, M.F.C., Pakhomova, T.B., et al., Inorg. Chim. Acta, 2000, vols. 300-302, p. 499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, M.L., Dement'ev, A.I. Theoretical Study of the Mechanism of Nucleophilic Addition of Oximes to trans-[PtCl4(NCCH3)2]. Russian Journal of Coordination Chemistry 28, 191–200 (2002). https://doi.org/10.1023/A:1014776019049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014776019049

Keywords

Navigation