Skip to main content
Log in

Breast Cancer in the Clinic: Treatments Past, Treatments Future

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Therapeutic options for the patient with systemic breast cancer were long limited to either chemotherapy and hormonal therapy. While these therapies provide palliation for many patients with advanced disease, and occasionally cure the patient with micrometastatic disease, they are not optimal either with regard to toxicity or efficacy. This paper reviews the past of systemic therapy (chemotherapy and hormonal therapy), then discusses developing treatment strategies. These strategies include the recently introduced anti-HER-2 antibody trastuzumab, novel agents targeting other aspects of tumor growth mechanisms, as well as agents blocking angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Beatson (1896). On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment with illustrative cases. Lancet 2:104-107.

    Google Scholar 

  2. E. Jensen and H. Jacobson (1962). Basic guides to the mechanism of estrogen action. Recent Prog. Horm. Res. 18:387-414.

    Google Scholar 

  3. W. McGuire, P. Carbone, and E. Vollmer (1975). Estrogen Receptors in Human Breast Cancer, Raven Press, New York.

    Google Scholar 

  4. P. Goss (Gwyn, KMEH) Current persepectives on aromatase inhibitors in breast cancer. J. Clin. Oncol. 12:2460-2470.

  5. Early Breast Cancer Clinical Trialists Group (1998). Polychemotherapy for early breast cancer: An overview of the randomised trials. Lancet 352:930-942.

    Google Scholar 

  6. B. Fisher, J. Constantino, D. Wickerham, et al. (1998). Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl. Cancer Inst. 16:1371-1388.

    Google Scholar 

  7. S. Cummings, L. Norton, S. Eckert, D. Grady, J. Cauley, et al. (1998). Raloxifene reduces the risk of breast cancer and may decrease the risk of endometrial cancer in post-menopausal women.Two-year findings from the multiple outcomes of raloxifene evaluation (MORE) trial. Proc. Am. Soc. Clin. Oncol. 17:2a.

    Google Scholar 

  8. M. Lippman, K. Krueger, S. Eckert, J. Cauley, E. Walls, S. Jamal, and S. Cummings (2000). Indicators of lifetime estrogen exposure: Effect on breast cancer incidence and interaction with raloxifene therapy in MORE trial participants. Breast Cancer Res. Treat. 64:27.

    Google Scholar 

  9. L. Klapper, S. Glathe, N. Vaisman, et al. (1999). The erbB-2/ HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc. Natl. Acad. Sci. USA 96:4995-5000.

    Google Scholar 

  10. P. O-charoenrat, P. Rhys-Evans, H. Modjtahedi, and S. Eccles (2000). Vascular endothelial growth factor family members are differentially regulated by c-erbB signaling in head and neck squamous carcinoma cells. Clin. Exp. Metastasis 18:155-161.

    Google Scholar 

  11. J. Rak, J. Yu, G. Klement, and R. Kerbel (2000). Oncogenes and angiogenesis: Signaling three-dimensional tumor growth. J. Invest. Dermatol. 5:24-33.

    Google Scholar 

  12. L. Yen, X. You, A. Al Moustafa, G. Batist, N. Hynes, S. Mader, S. Meloche, and M. Alaoui-Jamali (2000). Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene 19:3460-3469.

    Google Scholar 

  13. M. Koukourakis, A. Giatromanolaki, K. O'Byrne, J. Cox, B. Krammer, K. Gatter, and A. Harris (1999). bcl-2 and c-erbB-2 proteins are involved in the regulation of VEGF and of thymidine phosphorylase angiogenic activity in non-smallcell lung cancer. Clin. Exp. Metastasis 17:545-554.

    Google Scholar 

  14. D. Slamon, G. Clark, S. Wong, W. Levin, A. Ullrich, and W. McGuire (1987). Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177-182.

    Google Scholar 

  15. M. Cobleigh, C. Vogel, D. Tripathy, et al. (1998). Efficacy and safety of Herceptin (humanized anti-HER2 antibody) as a single agent in 222 women with HER2 overexpression who relapsed following chemotherapy for metastatic breast cancer. Proc. Am. Soc. Clin. Oncol. 17:97a (Abstract No. 376).

    Google Scholar 

  16. C. Vogel, M. Cobleigh, D. Tripathy, R. Mass, M. Murphy, and S. Stewart (2001). Superior outcomes with Herceptin in fluorecence in situ hybridization (FISH)-selected patients. Proc. Am. Soc. Clin. Oncol. 20:22a (Abstract No. 86).

    Google Scholar 

  17. D. Slamon, B. Leyland-Jones, S. Shak, et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344:783-792.

    Google Scholar 

  18. K. Chien (2000). Myocyte survival pathways and cardiomyopathy: Implications for trastuzumab cardiotoxicity. Semin. Oncol. 27(6 Suppl. 11):9-14.

    Google Scholar 

  19. M. Pegram, R. Finn, K. Arzoo, M. Beryt, R. Pietras, and D. Slamon (1997). The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancers cells. Oncogene 15:537-747.

    Google Scholar 

  20. A. Seidman, M. Fornier, F. Esteva, iet al. (2000). Final report: Weekly Herceptin andTaxol for metastatic breast cancer: Analysis of efficacy by HER2 phenotype (Immunohistochemistry) and gene amplification (fluorescent in situ hybridization). Proc. Am. Soc. Clin. Oncol. 19:83a(Abstract No. 319).

    Google Scholar 

  21. H. Burstein, I. Kuter, I. Richardson, et al. (2000). Herceptin and vinorelbine for HER2-positive metastatic breast cancer:A phase II study. Proc. Am. Soc. Clin. Oncol. 19:102a(Abstract No. 392).

    Google Scholar 

  22. M. Theodoulou, S. Campos, L. Welles, et al. (2001). Preliminary cardiac safety and efficacy data from a Phase I/II trial of TLC D-99 and trastuzumab in patients with locally advanced or metastatic breast cancer. Proc. Am. Soc. Clin. Oncol. 20:46a(Abstract No. 180).

    Google Scholar 

  23. M. Press, G. Hung, W. Godolphin, and D. Slamon (1994). Sensitivity of HER-2/neu antibodies in archival tissue samples: Potential sources of error in immunohistochemical studies of oncogene expression. Cancer Res. 54:2771-2777.

    Google Scholar 

  24. G. Pauletti, S. Dandekar, H. Rong, L. Ramos, H. Peng, R. Seshadri, and D. Slamon (2000). Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: A direct comparison of fluorescence in situ hybridization and immunohistochemistry. J. Clin. Oncol. 18:3651-3664.

    Google Scholar 

  25. R. Mass, M. Press, S. Anderson, M. Murphy, and D. Slamon (2001). Improved survival benefit from Herceptin (trastuzumab) in patients selected by fluorescence in situ hybridization. Proc. Am. Soc. Clin. Oncol. 20:22a(Abstract No. 85).

    Google Scholar 

  26. M. Press, L. Bernstein, P. Thomas, et al. (1997). HER-2/neu gene amplification characterized by fluorescence in situ hybridization: Poor prognosis in node-negative breast carcinomas. J. Clin. Oncol. 15:2894-2904.

    Google Scholar 

  27. J. Klijn, P. Berns, P. Schmitz, et al. (1992). The clinical signifi-cance of epidermal growth factor receptor (EGF-R) in human breast cancer:Areview on 5232 patients. Endocr. Rev. 13:3-17.

    Google Scholar 

  28. R. Walker and S. Dearing (1999). Expression of epidermal growth factor receptor mRNA and protein in primary breast carcinomas. Breast Cancer Res. Treat. 53:167-176.

    Google Scholar 

  29. M. Beckman, D. Niederacher, G. Massenkeil, et al. (1996). Expression analyses of epidermal growth factor receptor and HER-2/neu: No advantage of prediction of recurrence or survival in breast cancer patients. Oncology 53:441-447.

    Google Scholar 

  30. B. Bucci, I. D'Agnano, C. Botti, et al. (1997). EGFR-R expression in ductal breast cancer: Proliferation and prognostic implications. Anticancer Res. 17:769-774.

    Google Scholar 

  31. J. Woodburn (1999). The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther. 82:241-250.

    Google Scholar 

  32. H. Waksal (1999). Role of an anti-epidermal growth factor receptor in treating cancer. Cancer Metastasis Rev. 18:427-436.

    Google Scholar 

  33. M. Pepper, S. Mandriota, J. Vassalli, L. Orci, and R. Montesano (1996). Angiogenesis-regulating cytokines: Activities and interactions. Curr. Topics in Microbiol. Immunol. 213(pt. 2):31-67.

    Google Scholar 

  34. J. Folkman (1995). Clinical applications of research on angiogenesis. N. Engl. J. Med. 333:1757-1763.

    Google Scholar 

  35. M. Toi, S. Kondo, H. Suzuki, et al. (1996). Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77:1101-1106.

    Google Scholar 

  36. N. Ferrara (1995). The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res. Treat. 36:127-137.

    Google Scholar 

  37. M. Toi, K. Inada, H. Suzuki, and T. Tominaga (1995). Tumor angiogenesis in breast cancer: Its importance as a prognostic indicator and the association with vascular endothelial growth factor expression. Breast Cancer Res. Treat. 36:193-204.

    Google Scholar 

  38. L. Dirix, P. Vermeulen, A. Prove, P. Van Dam, M. Martin, I. Benoy, and A. Van Oosterom (1996). Elevated serum levels of basic fibroblast growth factor and of vascular endothelial cell growth factor are related to tumour progression in advanced breast cancer. Ann. Oncol. 7(Suppl. 5):5(Abstract No. 12P).

    Google Scholar 

  39. G. Gasparini, M. Toi, M. Gion, et al. (1997). Prognostic significance of vascular endothelial growth factor protein in nodenegative breast carcinoma. J. Natl. Cancer Inst. 89:139-147.

    Google Scholar 

  40. G. Gasparini and A. L. Harris (1995). Clinical importance of the determination of tumor angiogenesis in breast carcinoma: Much more than a new prognostic tool. J. Clin. Oncol. 13: 765-782.

    Google Scholar 

  41. G. Gasparini, N. Weidner, P. Bevilacqua, S. Maluta, P. Dalla Palma, O. Caffo, M. Barbareschi, P. Boracchi, E. Marubini, and F. Pozza (1994). Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J. Clin. Oncol. 12:454-466.

    Google Scholar 

  42. N. Weidner, J. Folkman, F. Pozza, et al. (1992). Tumor angiogenesis: Anew significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 84:1875-1877.

    Google Scholar 

  43. N. Weidner, J. Semple, W. Welch, and J. Folkman (1991). Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N. Engl. J. Med. 324:1-8.

    Google Scholar 

  44. K. J. Kim, B. Li, J. Winer, M. Armanini, N. Gillett, H. S. Phillips, and N. Ferrara (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841-844.

    Google Scholar 

  45. P. Perrotte, T. Matsumoto, K. Inoue, H. Kuniyasu, B. Eve, D. Hicklin, R. Radinsky, and C. Dinney (1999). Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 5:257-265.

    Google Scholar 

  46. C. Bruns, C. Solorzano, M. Harbison, S. Ozawa, R. Tsan, D. Fan, J. Abbruzzese, P. Traxler, E. Buchdunger, R. Radinsky, I. Fidler (2000). Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res. 60:2926-2935.

    Google Scholar 

  47. F. Ciardiello, R. Bianco, V. Damiano, G. Fontanini, R. Caputo, G. Pomatico, S. De Placido, A. Bianco, J. Mendelsohn, and G. Tortora (2000). Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin. Cancer Res. 6:3739-3747.

    Google Scholar 

  48. C. Goldman, J. Kim, W. Wong, V. King, T. Brock, and G. Gillespie (1993). Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: A model of glioblastoma multiforme pathophysiology. Mol. Biol. Cell 4:121-133.

    Google Scholar 

  49. G. Sledge, K. Miller, W. Novotny, J. Gaudreault, M. Ash, and M. Cobleigh (2000). A phase II trial of single-agent rhuMAb VEGF (recombinant humanized monoclonal antibody to vascular endothelial growth factor) in patients with relapsed metastatic breast cancer. Proc. Am. Soc. Clin. Oncol. 19:3a (Abstract No. 5c).

    Google Scholar 

  50. C. Fisher, S. Gilbertson-Beadling, E. A. Powers, G. Betzold, R. Poorman, and M. A. Mitchell (1994). Interstitial collagenase is required for angiogenesis in vitro. Dev. Biol. 162:499-510.

    Google Scholar 

  51. H. Schnaper, D. Grant, W. Stetler-Stevenson, et al. (1993). Type IV collageneases and TIMPs modulate endothelial cell morphogenesis in vitro. J. Cell Physiol. 156:235-246.

    Google Scholar 

  52. T. Karelna, G. Goldberg, and A. Eisen (1995). Matrix metalloproeinases in blood vessel development in human fetal skin and in cutaneous tumors. J. Invest. Dermatol. 105:411-417.

    Google Scholar 

  53. G. W. Sledge, M. Qulali, R. Goulet, E. A. Bone, and R. Fife (1995). Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J. Natl. Cancer Inst. 87:1546-1550.

    Google Scholar 

  54. B. Davies, P. D. Brown, N. East, M. J. Crimmin, and F. R. Balkwill (1993). Asynthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res. 53:2087-2091.

    Google Scholar 

  55. K. Miller, W. Gradishar, L. Schucter, J. Sparano, M. Cobleigh, N. Robert, P. Guiney, A. McDonald, H. Rasmussen, and G. Sledge (2000). A randomized Phase II pilot trial of adjuvant marimastat in patients with early breast cancer. Proc. Am. Soc. Clin. Oncol. 19:96a.

    Google Scholar 

  56. H. Rugo, D. Budman, C. Vogel, et al. (2001). Phase II study of the matrix metalloproteinase inhibitor prinomastat in patients with progressive metastatic breast cancer. Proc. Am. Soc. Clin. Oncol. 20 (Abstract No. 187).

    Google Scholar 

  57. P. C. Brooks, R. A. F. Clark, and D. A. Cheresh (1994). Requirement of vascular integrin avb3 for angiogenesis. Science 264:569-571.

    Google Scholar 

  58. P. Brooks, A. Montgomery, M. Rosenfeld, R. Reisfeld, T. Hu, G. Klier, andD. Cheresh (1994). Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157-1164.

    Google Scholar 

  59. P. E. Thorpe and F. J. Burrows (1995). Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Res. Treat. 36:237-251.

    Google Scholar 

  60. M. O'Reilly, T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. Lane, E. Flynn, J. Birkhed, B. Olsen, and J. Folkman (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277-285.

    Google Scholar 

  61. M. O'Reilly, L. Holmgren, y. Shing, C. Chen, R. Rosenthal, M. Moses, W. Lane, Y. Cao, E. Sage, and J. Folkman (1994). Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315-328.

    Google Scholar 

  62. A. Tsukamoto, Y. Kaneko, T. Yoshida, et al. (1998). 2-methoxyestradiol, an endogenous metabolite of estrogen, enhances apoptosis and beta-galactosidase expression in vascular endothelial cells. Biochem. Biophys. Res. Commun. 248:9-12.

    Google Scholar 

  63. T. Yue, X. Wang, C. Louden, et al. (1997). 2-methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: Possible role for stressactivated protein kinase signaling pathway and Fas expression. Mol. Pharmacol. 51:951-962.

    Google Scholar 

  64. J. Seegers, M. Lottering, C. Grobler, et al. (1997). The mammalian metabolite, 2-methoxyestradiol, affects p53 levels and apoptosis induction in transformed cells but not in normal cells. J. Steroid Biochem. Mol. Biol. 62.

  65. F. Reiser, D. Way, M. Bernas, et al. (1998). Inhibition of normal and experimental angiotumor endothelial cell proliferation and cell cycle progression by 2-methoxyestradiol. Proc. Soc. Exp. Biol. Med. 1998:211-216.

    Google Scholar 

  66. K. Miller, L. Haney, V. Pribluda, and G. Sledge (2001). A phase I safety, pharmacokinetic, and pharmacodynamic study of 2-methoxyestradiol in patients with refractory metastatic breast cancer. Proc. Am. Soc. Clin. Oncol. 20 (AbstractNo. 170).

    Google Scholar 

  67. S. Singhal, J. Mehta, R. Desikan, D. Ayers, et al. (1999). Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341:1565-1571.

    Google Scholar 

  68. S. Baidas, E. Winer, G. Fleming, L. Harris, et al. (2000). Phase II evaluation of thalidomide in patients with metastatic breast cancer. J. Clin. Oncol. 18:2710-2717.

    Google Scholar 

  69. K. Miller, C. Sweeney, and G. Sledge (2001). Redefining the target: Chemotherapeutics as antiangiogenics. J. Clin. Oncol. 19:1195-1206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Sledge Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sledge, G.W. Breast Cancer in the Clinic: Treatments Past, Treatments Future. J Mammary Gland Biol Neoplasia 6, 487–495 (2001). https://doi.org/10.1023/A:1014747300739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014747300739

Navigation