Skip to main content
Log in

RFLP analysis of Aegilops species belonging to the Sitopsis section

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The phylogenetic relationships among theAegilops species belonging to the Sitopsis section were investigated using RFLP (restriction-fragment-length polymorphism) analysis. Twenty-five probes, each of which hybridised to oneor more restriction fragments located in the B-genomechromosomes of cultivated wheats, were used. At least one and in most cases two fragments were located in every B genome chromosome arm. Adendrogram derived from a cluster analysis of the complete RFLP dataset showed a subdivision of the species belonging to the Sitopsis section into one group comprising the species of the Truncata subsection and another group comprised of the species of theEmarginata subsection. Dendrograms also were produced using RFLP data from loci located in different combinations of only three chromosomes, and some of these showed different subdivisions of the species. This demonstrates the importance in obtaining reliable classification data of using probes that detect loci evenly distributed in the genome and located in each chromosomearm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankory H. and Zohary D. 1962. Natural hybridization between Aegilops sharonensis and Ae. longissima: a morphological and cytological study. Cytologia 27: 314–324.

    Google Scholar 

  • Badaeva E.D., Friebe B. and Gill B.S. 1996. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39: 293–306.

    Google Scholar 

  • Bahrman N., Zivy M. and Thiellement H. 1988. Genetic relationship in the Sitopsis section of Triticum and the origin of the B genome of polyploid wheats. Heredity 61: 473–480.

    Google Scholar 

  • Blanco A., Bellomo M.P., Cenci A., De Giovanni C., D'Ovidio R., Iacono E. et al. 1998. A genetic linkage map of durum wheat. Theor. Appl. Genet. 97: 721–728.

    Google Scholar 

  • Bowden W.M. 1959. The taxonomy and nomemclature of the wheats, barleys and ryes and their wild relatives. Canad. J. Bot. 37: 657–684.

    Google Scholar 

  • Breiman A., Bogher M., Sternberg H. and Graur D. 1991. Variability and uniformity of the mitochondrial DNA in populations of putative diploid ancestors of the common wheat. Theor. Appl. Genet. 82: 201–208.

    Google Scholar 

  • Dellaporta S.L., Wood J. and Hicks J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Reporter 1: 19–21.

    Google Scholar 

  • D'Ovidio R., Tanzarella O.A. and Porceddu E. 1992. Isolation of an alpha-type gliadin gene from Triticum durum Desf. and genetic polymorphism at the Gli-2 loci. J. Genet. and Breed. 46: 41–48.

    Google Scholar 

  • D'Ovidio R., Tanzarella O.A., Cenci A., Iacono E. and Porceddu E. 1994. RFLP analysis in wheat. Isolation and chromosomal assignment of digoxigenin-labelled clones. J. Genet. and Breed. 48: 73–80.

    Google Scholar 

  • Dvorak J. and Zhang H.B. 1990. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc. Natl. Acad. Sci., USA 87: 9640–9644.

    Google Scholar 

  • Dvorak J. and Zhang H.B. 1992. Recostruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. Theor. Appl. Genet. 84: 419–429.

    Google Scholar 

  • Dvorak J., Terlizzi D., Zhang H.B. and Resta P. 1992. The evolution of polyploid wheats; identification of the A genome donor species. Genome 36: 21–31.

    Google Scholar 

  • Eig A. 1929. Monographisch-kritische Übersicht der Gattung Aegilops. Beih. Repert. Spec. Nov. Regni Veg. 55: 1–228.

    Google Scholar 

  • Friebe B., Tuleen N., Jang J. and Gill B.S. 1993. Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome 36: 731–742.

    Google Scholar 

  • Friebe B., Tuleen N.A. and Gill B.S. 1995. Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor. Appl. Genet. 91: 248–254.

    Google Scholar 

  • Giorgi D. 1996. Caratterizzazione molecolare delle specie di Aegilops appartenenti alla sezione Sitopsis e loro affinita con il genoma B dei frumenti coltivati, phd (PhD dissertation). University of Tuscia, Viterbo, Italy.

    Google Scholar 

  • Hammer K. 1980. Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28: 33–180.

    Google Scholar 

  • Hassan M.D. and Gustafson J.P. 1996. Molecular evidence for the Triticum speltoides as a B genome progenitor of wheat (Triticum aestivum) 1. Genome 39: 543–548.

    Google Scholar 

  • Jenkins J.A. 1929. Chromosome homologies in wheat and Aegilops. Am. J. Bot. 16: 238–245.

    Google Scholar 

  • Kihara H. 1919. Über cytologische Studien bei einigen Getreidearten. Mit. I. Spezies-bastard des Weizens und Weizenroggenbastarde. Bot. Mag. 33: 17–38.

    Google Scholar 

  • Kihara H. 1924. Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem. Coll. Sci. Kyoto Imp. Univ. 1: 1–200.

    Google Scholar 

  • Kihara H. 1954. Consideration on the evolution and the distribution of Aegilops based on the analyser method. Cytologia 19: 336–357.

    Google Scholar 

  • Kimber G. 1961. Cytogenetics of haploidy in Gossypium and Triticum, phd (Ph.D dissertation). University of Manchester, Manchester, UK.

    Google Scholar 

  • Kimber G. and Alonso L.C. 1981. The analysis of meiosis in hybrids. III. Tetraploid hybrids. Can. J. Genet. Cytol. 23: 235–254.

    Google Scholar 

  • McFadden E.S. and Sears E.R. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37: 81–89.

    Google Scholar 

  • Mendlinger S. and Zohary D. 1995. The extent and structure of genetic variation in species of the Sitopsis group of Aegilops. Heredity 74: 616–627.

    Google Scholar 

  • Nelson J.C., Van Deynze A.E., Autrique E., Sorrells M.E., Lu Y.H., Merlino M. et al. 1995a. Molecular mapping of wheat. Homoeologous group 2. Genome 38: 516–524.

    Google Scholar 

  • Nelson J.C., Van Deynze A.E., Autrique E., Sorrells M.E., Lu Y.H., Negre S. et al. 1995b. Molecular mapping of wheat. Homoeologous group 3. Genome 38: 525–533.

    Google Scholar 

  • Nelson J.C., Sorrells M.E., Van Deynze A.E., Lu Y.H., Atkinson M.B., Bernard M. et al. 1995c. Molecular mapping of wheat: major genes and rearrangements in homoeologous group 4, 5 and 7. Genetics 141: 721–731.

    Google Scholar 

  • Ogihara Y. and Tsunewaki K. 1988. Diversity and evolution of chloroplast in Triticum and Aegilops as revealed by restriction fragment analysis. Theor. Appl. Genet. 76: 321–332.

    Google Scholar 

  • Rohlf F.J. 1989. NTSYS-PC Numerical taxonomy and multivariate analysis system. Exeter Publishing Ltd., New York,Version 1.50.

    Google Scholar 

  • Roy R.P. 1959. Genome analysis of Aegilops sharonensis. Genetics 29: 331–357.

    Google Scholar 

  • Sarkar P. and Stebbins G.L. 1956. Morphological evidence concerning the B genome in wheat. Am. J. Bot. 43: 297–304.

    Google Scholar 

  • Sasanuma T., Miyashita N.T. and Tsunewaki K. 1996. Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intro-and interspecific variations of five Aegilops Sitopsis species. Theor. Appl. Genet. 92: 928–934.

    Google Scholar 

  • van Slageren M.W. 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agriculture University Papers 1994(7). 513 pp.

  • Southern E. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–509.

    Google Scholar 

  • Talbert L.E., Magyar G.M., Lavin M., Blake T.K. and Moylan S.L. 1991. Molecular evidence for the origin of the S-derived genomes of the polyploid Triticum species. Am. J. Bot. 78(3): 340–349.

    Google Scholar 

  • Tanaka M. 1955. Chromosome pairing in hybrids between Ae. sharonensis and some species of Aegilops and Triticum. Wheat Inf. Serv. 2: 7–10.

    Google Scholar 

  • Terachi T., Ogihara Y. and Tsunewaki K. 1990. The molecular basis of genetic diversity among cytoplasm of Triticum and Aegilops. 7. Restriction endonuclease analysis of mitochondrial DNAs from polyploid wheats and their ancestral species. Theor. Appl. Genet. 80: 366–373.

    Google Scholar 

  • Van Deynze A.E., Dubcovsky J., Gill K.S., Nelson J.C., Sorrells M.E., Dvorak J. et al. 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38: 45–59.

    Google Scholar 

  • Waines G.J. and Johnson L.B. 1972. Genetic differences between Aegilops longissima, A. sharonensis and A. bicornis. Can. J. Genet. Cytol. 14: 411–416.

    Google Scholar 

  • Wang G.Z., Miyashita N.T. and Tsunewaki K. 1997. Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc. Natl. Acad. Sci. USA 94: 14570–14577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgi, D., D'Ovidio, R., Tanzarella, O.A. et al. RFLP analysis of Aegilops species belonging to the Sitopsis section. Genetic Resources and Crop Evolution 49, 145–151 (2002). https://doi.org/10.1023/A:1014743823887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014743823887

Navigation