Skip to main content
Log in

Breast Cancer and the Immune System: Opportunities and Pitfalls

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The identification of tumor-associated antigens, and advances in our understanding of human immunology, have resulted in renewed interest in tumor immunology. A variety of approaches have been utilized in recent years against different tumor types. The results from some of these studies have been encouraging, but it is not yet clear whether they will be applicable to patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Vose and M. Moore (1985). Human tumor-infiltrating lymphocytes: Amarker of host immune response. Semin. Hematol. 22:27-40.

    Google Scholar 

  2. S. Menard, G. Tomasic, P. Casalini, A. Balsari, S. Pilotti, N. Cascinelli, S. B. alvadori, M. I. Colnaghi, and F. Rilke (1997). Lymphoid infiltration as a prognostic variable for early onset breast carcinomas. Clin. Cancer Res. 3:817-819.

    Google Scholar 

  3. P. P. Rosen, S. Groshen, P. E. Saigo, D.W. Kinne, and S. Hellman (1989). Pathological prognostic factors in stage I and stage II breast carcinoma: A study of 644 patients with median followup of 18 years. J. Clin. Oncol. 7:1239-1251.

    Google Scholar 

  4. P. Whitford, W. George, and G. A. Campbell (1992). Flow cytometric analysis of tumor-infiltrating lymphocyte activation and tumor cell MHC class I and class II expression in breast cancer patients. Cancer Lett. 61:157-164.

    Google Scholar 

  5. Y. Chin, J. Janseens, J. Vandepitte, J. Vandenbrande, L. Opdebeek, and J. Raus (1992). Phenotypic analysis of tumorinfiltrating lymphocytes from human breast cancer. Anticancer Res. 12:1463-1466.

    Google Scholar 

  6. C. N. Baxevanis, G. V. Dedoussis, N. G. Papadopoulos, I. Missitzis, G. P. Stathopoulos, and M. Papamichail (1994). Tumor specific cytolysis by tumor infiltrating lymphocytes in breast cancer. Cancer 74:1275-1282.

    Google Scholar 

  7. M. L. Disis, E. Calenoff, G. McLaughlin, A. E. Murphy, W. Chen, B. Groner, M. Jeschke, M. Lydon, E. McGlynn, and R. B. Livingston (1994). Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. 54:16-20.

    Google Scholar 

  8. J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka (2000). Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767-812.

    Google Scholar 

  9. D. Bell, P. Chomarat, D. Broyles, G. Netto, G. M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K. A. Palucka, and J. Banchereau (1999). In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J. Exp. Med. 190: 1417-1425.

    Google Scholar 

  10. B. Seliger, M. Maeurer, and S. Ferrone (2000). Antigenprocessing machinery breakdown and tumor growth. Immunol. Today 21:455-464.

    Google Scholar 

  11. A. Maiorana, A. M. Cesinaro, R. A. Fano, and G. Collina (1995). Expression of MHC class I and class II antigens in primary breast carcinomas and synchronous nodal metastases. Clin. Exp. Metastasis 13:43-48.

    Google Scholar 

  12. B. Camp, S. Dyhrman, V. Memoli, L. Mott, and R. J. Barth (1996). In situ cytokine production by breast cancer tumorinfiltrating lymphocytes. Ann. Surg. Oncol. 3:176-184.

    Google Scholar 

  13. E. Venetsanakos, I. Beckman, J. Bradley, and J. Skinner (1997). High incidence of interleukin 10 mRNA but not interleukin 2 mRNA detected in human breast tumors. Br. J. Cancer 75:1826-1830.

    Google Scholar 

  14. J. B. Vermoken, A. M. E. Claessen, H. van Tinteren, H. E. Gall, R. Ezinga, S. Meijer, R. J. Scheper, C. J. L. M. Meijer, E. Bloemena, J. H. Ransom, M. G. Hanna, and H. M. Pinedo (1999). Active specific immunotherapy for stage II and stage III human colon cancer: A randomized trial. Lancet 353:345-350.

    Google Scholar 

  15. A. Y. Huang, P. Golumbek, and M. Ahmadzadeh (1994). Role of bone marrow derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961-965.

    Google Scholar 

  16. A. Chan and D. Morton (1998). Active immunotherapy with allogeneic tumor cell vaccines: Present status. Semin. Oncol. 25:611-622.

    Google Scholar 

  17. L. Fong and E. Engelman (2000). Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 18:245-273.

    Google Scholar 

  18. F. J. Hsu, C. Benike, and F. Fagnoni (1996). Vaccination of patients withBcell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2:52-58.

    Google Scholar 

  19. N. Romani, D. Reider, M. Heuer, S. Ebner, S. Kampgen, B. Eibl, D. Neiderwieser, and G. Schuler (1996). Generation of mature dendritic cells fromhumanblood:Animproved method with special regard to clinical applicability. J. Immunol. Methods 196:137-151.

    Google Scholar 

  20. F. O. Nestle, S. Alijagic, M. Gilliet, Y. Sun, S. Grabbe, R. Dummer, G. Burg, and D. Schadendorf (1998). Vaccination of melanoma patients with peptide or tumor lysate-pulsed dendritic cells. Nat. Med. 4:328-332.

    Google Scholar 

  21. B. Thurner, I. Haendle, C. Roder, D. Dieckmann, P. Keikavoussi, H. Jonuleit, A. Bender, C. Maczek, D. Schreiner, P. von der Driesch, B. Brocker, R. M. Steinman, A. Enk, E. Kampgen, and G. Schuler (1999). Vaccination with Mage-3-A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190:1669-1678.

    Google Scholar 

  22. P. Brossart, S. Wirths, and G. Stuhler (2000). Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96:3102-3108.

    Google Scholar 

  23. J. Gong, D. Chen, M. Kashiwaba, and D. Kufe (1998). Induction of antitumour activity by immunization with fusions of dendritic and carcinoma cells. Nat. Med. 3:558-561.

    Google Scholar 

  24. A. Kugler, G. Stuhler, P. Walden, G. Zoller, A. Zobywalski, P. Brossart, U. Trefzer, S. Ullrich, C. A. Muller, V. Becker, A. J. Gross, B. Hemmerlein, L. Kanz, G. A. Muller, and R. H. Ringert (2000). Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med. 6:332-336.

    Google Scholar 

  25. S. Nair (1998). Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat. Biotechnol. 16:364-369.

    Google Scholar 

  26. S. Nair (2000). Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat. Med. 6:1011-1017.

    Google Scholar 

  27. D. Boczkowski, S. K. Nair, J. H. Nam, H. K. Lyerly, and E. Gilboa (2000). Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 60:1028-1034.

    Google Scholar 

  28. A. Heiser, M. A. Maurice, D. R. Yancey, N. Z. Wu, P. Dahm, S. Pruitt, D. Boczkowski, S. K. Nair, M. S. Ballo, E. Gilboa, and J. Vieweg (2001). Induction of polyclonal prostate cancerspecific CTL using dendritic cells transfected with amplified tumor RNA. J. Immunol. 166:2953-2960.

    Google Scholar 

  29. B. Fisk, T. Blevins, J. Wharton, and C. Ioannides (1995). Identification of an immunodominant peptide of HER2/neu proto-oncogene in vitro. J. Exp. Med. 181:2109-2117.

    Google Scholar 

  30. T. Zaks and S. Rosenberg (1998). Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neuC tumors. Cancer Res. 58:4902-4908.

    Google Scholar 

  31. P.-X. Xing, M. Michael, V. Apostolopoulos, J. Prenzoska, C. Marshall, J. Bishop, and I. F. C. McKenzie (1995). Phase I study of syntheticMUC1peptides in breast cancer. Int. J. Oncol. 6:1283-1289.

    Google Scholar 

  32. M. A. Reddish, G. D. Maclean, R. R. Koganty, J. Kan-Mitchell, V. Jones, M. S. Mitchell, and B. M. Longenecker (1998). Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunised with a syntheticMUC1peptide. Int. J. Cancer. 76:817-823.

    Google Scholar 

  33. V. Karanikas, L.-A. Hwang, J. Pearson, C.-S. Ong, V. Apostolopoulos, H. Vaughan, P.-X. Xing, G. Jamieson, G. Pietersz, B. Tait, R. Broadbent, G. Thynne, and I. F. C. McKenzie (1997). Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. 100:2783-2792.

    Google Scholar 

  34. V. Apostolopoulos, C. Osinski, and I. McKenzie (1998). MUC1 cross-reactive Gal(1,3)Gal antibodies in humans switch immune responses from cellular to humoral. Nat. Med. 4:315-320.

    Google Scholar 

  35. P. Livingston (1998). Ganglioside vaccines with emphasis on GM2. Semin. Oncol. 25:636-645.

    Google Scholar 

  36. G. D. MacLean, M. A. Reddish, R. R. Koganty, and B. M. Longenecker (1996). Antibodies against mucinassociated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccine. J. Immunother. Emphasis Tumor Immunol. 19:59-68.

    Google Scholar 

  37. S. Scholl (1997). The polymorphic epithelial mucin (MUC1): A phase I clinical trial testing the tolerance and immunogenicity of a vaccinia virus-MUC1-IL2 construct in breast cancer [Abstract]. Breast Cancer Treat. Res. 46:268.

  38. H. S. Pandha, L. A. Martin, A. Rigg, H. C. Hurst, G.W. Stamp, K. Sikora, and N. R. Lemoine (1999). Genetic prodrug activation therapy for breast cancer:Aphase I clinical trial of erbB2-directed suicide gene expression. J. Clin. Oncol. 17:2180-2189.

    Google Scholar 

  39. T. Kurihara (2000). Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing theMUC1 antigen. J. Clin. Invest. 106:763-771.

    Google Scholar 

  40. S. Gurunathan, D. Klinmann, and R. Seder (2000). DNA vaccines: Immunology, application and optimization. Annu. Rev. Immunol. 18:927-974.

    Google Scholar 

  41. R. A. Graham, J. M. Burchell, and J. Taylor-Papadimitriou (1996). Intramuscular immunization with MUC1 cDNA can protect C57 mice challenged with MUC1-expressing syngeneic tumor cells. Int. J. Cancer 65:664-670.

    Google Scholar 

  42. J. Schneider, S. C. Gilbert, T. J. Blanchard, and A. Hill (1998). Enhanced immunogenicity for CD8CTcell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 4:397-402.

    Google Scholar 

  43. H. L. Robinson, D. C. Montefiori, and R. P. Johnson (1999). Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immmunizations. Nat. Med. 5:526-534.

    Google Scholar 

  44. J. Baselga, D. Tripathy, J. Mendelsohn, S. Baughman, C. C. Benz, L. Dantis, N.T. Sklarin, A.D. Seidman, C. A. Hudis, J. Moore, P. P. Rosen, T. Twaddell, I. C. Henderson, and L. Norton (1996). Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14:737-744.

    Google Scholar 

  45. M. A. Cobleigh, C. L. Vogel, D. Tripathy, N. J. Robert, S. Scholl, L. Fehrenbacher, J. M. Wolter, V. Paton, S. Shak, G. Lieberman, and D. J. Slamon (1999). Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2 overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 37:2639-2648.

    Google Scholar 

  46. D. J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, and L. Norton (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344:783-792.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Taylor-Papadimitriou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plunkett, T.A., Correa, I., Miles, D.W. et al. Breast Cancer and the Immune System: Opportunities and Pitfalls. J Mammary Gland Biol Neoplasia 6, 467–475 (2001). https://doi.org/10.1023/A:1014743232598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014743232598

Navigation