Skip to main content
Log in

Computer Simulation of Charge Separation in Vapor–Gas Mixtures

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The interaction between counterions in water vapor is modeled by the Monte-Carlo method. A material contact of a system with vapor is modeled using a large canonical statistical ensemble. A powerful minimum, which forms in the medium-strength interaction potential at the expense of pulling molecules into the ion–ion gap, leads to separation of charges and stabilization of ions at distances that are much greater than the thickness of hydration shells of the ions. Spatial charge separation dramatically inhibits recombination and leads to accumulation of nonrecombined ion pairs. The discovered effect is of universal nature and explains some important atmospheric phenomena and results of electrometric laboratory experiments in moist air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Berkowitz, M., Karim, O.A., Cammon, J.A., and Rossky, P.J., Chem. Phys. Lett., 1984, vol. 105, p. 577.

    Google Scholar 

  2. Rossky, P.J., J. Chem. Phys., 1986, vol. 84, p. 5836.

    Google Scholar 

  3. Karim, O.A. and McCammon, J.A., Chem. Phys. Lett., 1986, vol. 132, p. 219.

    Google Scholar 

  4. Guardia, E., Rey, R., and Padro, J.A., J. Chem. Phys., 1991, vol. 95, p. 2823.

    Google Scholar 

  5. Degreve, L. and Quintale, C., J. Chem. Phys., 1994, vol. 101, p. 2319.

    Google Scholar 

  6. Smith, D.E. and Dang, L.X., J. Chem. Phys., 1994, vol. 100, p. 3757.

    Google Scholar 

  7. Driesner, Th. and Cummings, T.P., J. Chem. Phys., 1999, vol. 111, p. 5141.

    Google Scholar 

  8. Chialvo, A.A., Cummings, P.T., Simonson, J.M., and Mesmer, R.E., J. Chem. Phys., 1999, vol. 110, p. 1064.

    Google Scholar 

  9. Das, A.K. and Tembe, B.L., J. Chem. Phys., 1999, vol. 111, p. 7526.

    Google Scholar 

  10. Degreve, L. and Da Silva, F.L.B., J. Chem. Phys., 1999, vol. 110, p. 3070.

    Google Scholar 

  11. Carlon, H.R., J. Appl. Phys., 1981, vol. 52, p. 3111; 1981, vol. 52, p. 2638.

    Google Scholar 

  12. Carlon, H.R., Appl. Opt., 1981, vol. 20, p. 1316.

    Google Scholar 

  13. Carlon, H.R., J. Chem. Phys., 1982, vol. 76, p. 5523; 1983, vol. 78, p. 1622.

    Google Scholar 

  14. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 1994, vol. 105, p. 1258.

    Google Scholar 

  15. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 1995, vol. 108, p. 1373.

    Google Scholar 

  16. Shevkunov, S.V., Dokl. Akad. Nauk, 1997, vol. 356, p. 652.

    Google Scholar 

  17. Shevkunov, S.V., Dokl. Akad. Nauk, 1998, vol. 363, p. 215.

    Google Scholar 

  18. Shevkunov, S.V., Elektrokhimiya, 1998, vol. 34, p. 860; p. 869.

    Google Scholar 

  19. Shevkunov, S.V., Kolloidn. Zh., 1999, vol. 61, p. 275.

    Google Scholar 

  20. Shevkunov, S.V., Khim. Vys. Energ., 1999, vol. 33, p. 325.

    Google Scholar 

  21. Stakhanov, I.P., O fizicheskoi prirode sharovoi molnii (The Nature of the Ball Lightning), Moscow: Energoatomizdat, 1985.

    Google Scholar 

  22. Stakhanov, I.P., Zh. Tekh. Fiz., 1976, vol. 46, p. 82.

    Google Scholar 

  23. Gudzhenko, L.I., Derzhiev, V.I., and Yakovlenko, S.I., Tr. Fiz. Inst. Akad. Nauk. SSSR, 1980, vol. 120, p. 50.

    Google Scholar 

  24. Abbat, J.P.D., Beyer, K.D., Fucaloro, A.F., et al., J. Geophys. Res., 1992, vol. 97, p. 15819.

    Google Scholar 

  25. Lelieveld, J. and Crutzen, P.J., Nature (London), 1990, vol. 343, p. 227.

    Google Scholar 

  26. Molina, M.J., Tso, T.L., Molina, L.T., and Yang, E.Y., Science, 1987, vol. 238, p. 1253.

    Google Scholar 

  27. Kroes, G.-J. and Clary, D.C., J. Phys. Chem., 1992, vol. 96, p. 7079.

    Google Scholar 

  28. Re, S., Osamura, Y., and Suzuki, Y., J. Chem. Phys., 1998, vol. 109, p. 973.

    Google Scholar 

  29. Lau, Y.K., Ikita, S., and Kebarle, P., J. Am. Chem. Soc., 1982, vol. 104, p. 1462.

    Google Scholar 

  30. Payzant, J.D., Yamdagni, R., and Kebarle, P., Can. J. Chem., 1971, vol. 49, p. 3308.

    Google Scholar 

  31. Shevkunov, S.V. and Vegiri, A., J. Chem. Phys., 1999, vol. 111, p. 9303.

    Google Scholar 

  32. Shevkunov, S.V. and Vegiri, A., Mol. Phys., 2000, vol. 98, p. 149.

    Google Scholar 

  33. Vegiri, A. and Shevkunov, S.V., J. Chem. Phys., 2000, vol. 113, p. 8521.

    Google Scholar 

  34. Stillinger, F.H. and Rahman, A., J. Chem. Phys., 1974, vol. 60, p. 1545.

    Google Scholar 

  35. Kebarle, P., Searles, S.K., Zolla, A., et al., J. Am. Chem. Soc., 1967, vol. 89, p. 6393.

    Google Scholar 

  36. Arshadi, M. and Kebarle, P., J. Phys. Chem., 1970, vol. 74, p. 1483.

    Google Scholar 

  37. Shevkunov, S.V., Martsinovskii, A.A., and Vorontsov-Vel'yaminov, P.N., Teplofiz. Vys. Temp., 1988, vol. 26, p. 246.

    Google Scholar 

  38. Shevkunov, S.V., Martsinovskii, A.A., and Vorontsov-Vel'yaminov, P.N., Sovremennye problemy statisticheskoi fiziki (Modern Problems of Statistical Physics), Yukhnovskii, I.R., et al., Eds., Kiev: Naukova Dumka, 1989, vol. 1, p. 385.

    Google Scholar 

  39. Shevkunov, S.V. and Martsinovski, A.A., Vorontsov-Vel'yaminov P.N., Mol. Simul., 1990, vol. 5, p. 119.

    Google Scholar 

  40. Zamalin, V.M., Norman, G.E., and Filinov, V.S., Metod Monte-Karlo v statisticheskoi termodinamike (Application of the Monte-Carlo Method in Statistical Thermodynamics), Moscow: Nauka, 1977.

    Google Scholar 

  41. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., and Teller, H.A., J. Chem. Phys., 1953, vol. 21, p. 1087.

    Google Scholar 

  42. Rosenbluth, M.N. and Rosenbluth, A.W., J. Chem. Phys., 1954, vol. 22, p. 881.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevkunov, S.V. Computer Simulation of Charge Separation in Vapor–Gas Mixtures. Russian Journal of Electrochemistry 38, 300–307 (2002). https://doi.org/10.1023/A:1014743025797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014743025797

Keywords

Navigation