Skip to main content

Topological Analysis of Chaos in a Three-Variable Biochemical Model

Abstract

A three-variable biochemical prototype involving two enzymes with autocatalytic regulation proposed by Decroly and Goldbeter (1987) is analyzed using a topological approach. A two-branched manifold, a so-called template, is thus identified. For certain control parameter values, this template is a horseshoe template with a global torsion of two half-turns. This implies that the bifurcation diagram can be described using the usual sequences associated with a unimodal map with a differentiable maximum as well as exemplified by the logistic map. Moreover, a type-I intermittency associated with a saddle-node bifurcation is exhibited. The dynamics from a single time series are also investigated to determine whether it is possible to investigate the dynamics of this biochemical model from the measure of a single concentration.

This is a preview of subscription content, access via your institution.

REFERENCES

  • Abarbanel, H. D. I, R. Brown, J. J. Sidorowich and L. Sh. Tsimring (1993). The analysis of observed chaotic data in physical systems. Review of Modern Physics 65(4): 1331-1388.

    Google Scholar 

  • Broomhead, D. S. and G. P. King (1986). Extracting qualitative dynamics from experimental data. Physica D 20: 217-236.

    Google Scholar 

  • Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110: 43-52.

    Google Scholar 

  • Collet, P. and J. P. Eckmann (1980). Iterated maps on the interval as dynamical systems. Progress in Physics. Ed. A. Jaffe and D. Ruelle. Birkhäuser, Boston.

    Google Scholar 

  • Coullet, P. and C. Tresser (1978). Itéerations d'endomorphismes et groupe de renormalisation. Journal de Physique 8(39): C5-C25.

    Google Scholar 

  • Decroly, O. and A. Goldbeter (1982). Birhythmicity, chaos and other patterns of temporal self-organization in a multiply regulated biochemical system. Proceedings of the Natural Academy of Science (USA) 79: 6917-6921.

    Google Scholar 

  • Decroly, O. and A. Goldbeter (1987). From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system. Journal of Theoretical Biology 124: 219-250.

    Google Scholar 

  • Duysens, L. N. M. and J. Amesz (1957). Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochem. Biophysica Acta 24: 19-26.

    Google Scholar 

  • Feigenbaum, M. J. (1978). Quantitative Universality for a class of nonlinear transformation. Journal of Statistical Physics 19(1): 25-52.

    Google Scholar 

  • Ghosh, A. K. and B. Chance (1964). Oscillations of glycolytic intermediates in yeasts cells. Biochemical Biophysical Research Communications 16: 174-181.

    Google Scholar 

  • Gibson, J.F., J. D. Farmer, M. Casdagli and S. Eubank (1992). An analytic approach to practical state space reconstruction. Physica D 57: 1-30.

    Google Scholar 

  • Gilmore, R. (1998). Topological analysis of chaotic dynamical systems. Review of Modern Physics 70(4): 1455-1529.

    Google Scholar 

  • Goldbeter, A. (1996). Biochemical oscillations and regular rhythms. Cambridge University Press, Cambridge. Chapter 2.

    Google Scholar 

  • Goldbeter, A. and R. Lefever (1972). Dissipative structures for an allosteric model: applications to glycolytic oscillations. Biophysical Journal 12: 1302-1315.

    Google Scholar 

  • Grassberger, P. and I. Procaccia (1983). Measuring the strangeness of strange attractors. Physica D 9: 189-208.

    Google Scholar 

  • Letellier, C., P. Dutertre and B. Maheu (1995). Unstable periodic orbits and templates of the Rössler system: toward a systematic topological characterization. Chaos 5(1): 271-282.

    Google Scholar 

  • Letellier, C., J. Maquet, L. Le Sceller, G. Gouesbet and L. A. Aguirre (1998a). On the non-equivalence of observables in phase space reconstructions from recorded time series. Journal of Physics A 31: 7913-7927.

    Google Scholar 

  • Letellier, C., J. Maquet, H. Labro, L. Le Sceller, G. Gouesbet, F. Argoul and A. Arnéodo (1998b). Analyzing chaotic behaviour in a Belousov-Zhabotinskii reaction by using a global vector field reconstruction. Journal of Physical Chemistry A 102: 10265-10273.

    Google Scholar 

  • Nielsen, K., P. G. Sorensen and F. Hynne (1997). Chaos in glycolysis. Journal of Theoretical Biology 186: 303-306.

    Google Scholar 

  • Pomeau, Y. and P. Manneville (1980). Intermittent transition to turbulence in dissipative dynamical systems. Communications in Mathematical Physics 74: 189-197.

    Google Scholar 

  • Sel'kov, E. E. (1968). Self-oscillations in glycolysis: a simple kinetic model. European Journal of Biochemistry 4: 79-86.

    Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbulence. In: D. A. Rand and L. S. Young (Eds.). Dynamical Systems and Turbulence, Warwick, 1980. Lecture Notes in Mathematics, Vol. 898. Springer-Verlag, New York pp. 366-381.

    Google Scholar 

  • Thomas, R. (1999). Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, “labyrinth chaos”. International Journal of Bifurcation and Chaos 9(10): 1889-1905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Letellier, C. Topological Analysis of Chaos in a Three-Variable Biochemical Model. Acta Biotheor 50, 1–13 (2002). https://doi.org/10.1023/A:1014737424752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014737424752

Keywords

  • Time Series
  • Control Parameter
  • Bifurcation Diagram
  • Single Time
  • Topological Analysis