Skip to main content
Log in

The Role of Osteopontin in Breast Cancer: Clinical and Experimental Studies

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Osteopontin (OPN) is a secreted, integrin-binding protein which has been implicated in cancer, as well as other pathologies and some aspects of normal development. Here we focus on the role of OPN in breast cancer. We describe studies that have shown that OPN plays a role in normal mammary gland development as well as in progression of breast cancer. We also summarize studies that have shown that OPN can play a functional role in malignancy of breast cancer. At least some of these effects are mediated by specific cell surface integrins (αvβ3 vs. αvβ1 and αvβ5) and lead to increased cell migration, activation of growth factor/receptor pathways (e.g. HGF and EGF), and increased proteolytic enzyme activity (e.g. uPA). We also summarize clinical studies that show that OPN levels in tumors and blood are elevated in women with metastatic breast cancer and may offer promise as prognostic markers in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. R. Senger, C. A. Perruzzi, and A. Papadopoulos (1989). Elevated expression of secreted phosphoprotein I (osteopontin, 2ar) as a consequence of neoplastic transformation. Anticancer Res. 9:1291-1299.

    Google Scholar 

  2. A. Franzen and D. Heinegard (1985). Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem. J. 232:715-724.

    Google Scholar 

  3. R. Patarca, R. A. Saavedra, and H. Cantor (1993). Molecular and cellular basis of genetic resistance to bacterial infection: The role of the early T-lymphocyte activation-1/osteopontin gene. Crit. Rev. Immunol. 13:225-246.

    Google Scholar 

  4. A. M. Craig, M. Nemir, B. B. Mukherjee, A. F. Chambers, and D. T. Denhardt (1988). Identification of the major phosphoprotein secreted by many rodent cell lines as 2ar/osteopontin: Enhanced expression in H-ras-transformed 3T3 cells. Biochem. Biophys. Res. Comm. 157:166-173.

    Google Scholar 

  5. C. W. Prince (1989). Secondary structure predictions for rat osteopontin. Connect. Tissue Res. 21:15-20.

    Google Scholar 

  6. J. Sodek, B. Ganss, and M.D. McKee (2000). Osteopontin. Crit. Rev. Oral Biol. Med. 11:279-303.

    Google Scholar 

  7. R. Agnihotri, H. C. Crawford, H. Haro, L. M. Matrisian, M. C. Havrda, and L. Liaw (2001). Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J. Biol. Chem. 276:28261-28267.

    Google Scholar 

  8. A. J. Oates, R. Barraclough, and P. S. Rudland (1997). The role of osteopontin in tumorigenesis and metastasis. Invasion Metastasis 17:1-15.

    Google Scholar 

  9. C. M. Giachelli and S. Steitz (2000). Osteopontin: A versatile regulator of inflammation and biomineralization. Matrix Biol. 19:615-622.

    Google Scholar 

  10. D. T. Denhardt, M. Noda, A. W. O'Regan, D. Pavlin, and J. S. Berman (2001). Osteopontin as a means to cope with environmental insults: Regulation of inflammation, tissue remodeling, and cell survival. J. Clin. Invest. 107:1055-1061.

    Google Scholar 

  11. D. S. Bautista, J. W. Xuan, C. Hota, A. F. Chambers, and J. F. Harris (1994). Inhibition of Arg-Gly-Asp(RGD)-mediated cell adhesion to osteopontin by a monoclonal antibody against osteopontin. J. Biol. Chem. 269:23280-23285.

    Google Scholar 

  12. V. L. Morris, A. B. Tuck, S. M. Wilson, D. Percy, and A. F. Chambers (1993). Tumor progression and metastasis in murine D2hyperplastic alveolar nodulemammarytumor cell lines. Cin. Exp. Metastasis 11:103-112.

    Google Scholar 

  13. A.B. Tuck, D. M. Arsenault, F. P. O'Malley, C. Hota, M.C. Ling, S. M. Wilson, and A. F. Chambers (1999). Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18:4237-4246.

    Google Scholar 

  14. V. Sung, C. Gilles, A. Murray, R. Clarke, A.D. Aaron, N. Azumi, and E. W. Thompson (1998). The LCC15-MB human breast cancer cell line expresses osteopontin and exhibits an invasive and metastatic phenotype. Exp. Cell Res. 241:273-284.

    Google Scholar 

  15. J. A. Sharp, V. Sung, J. Slavin, E. W. Thompson, and M. A. Henderson (1999). Tumor cells are the source of osteopontin and bone sialoprotein expression in human breast cancer. Lab. Invest. 79:869-877.

    Google Scholar 

  16. A. J. Oates, R. Barraclough, and P. S. Rudland (1996). The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumour model. Oncogene 13:97-104.

    Google Scholar 

  17. H. Chen, Y. Ke, A. J. Oates, R. Barraclough, and P. S. Rudland (1997). Isolation of and effector for metastasisinducing DNAs from a human metastatic carcinoma cell line. Oncogene 14:1581-1588.

    Google Scholar 

  18. V. Band, D. Zajchowski, K. Swisshelm, D. Trask, V. Kulesa, C. Cohen, J. Connolly, and R. Sager (1990). Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res. 50:7351-7357.

    Google Scholar 

  19. J. E. Price, A. Polyzos, R. D. Zhang, and L. M. Daniels (1990). Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50:717-721.

    Google Scholar 

  20. V. Shanmugam, I. Chackalaparampil, G. C. Kundu, A. B. Mukherjee, and B. B. Mukherjee (1997). Altered sialylation of osteopontin prevents its receptor-mediated binding on the surface of oncogenically transformed tsB77 cells. Biochemistry 36:5729-5738.

    Google Scholar 

  21. E. S. Sorensen, P. Hojrup, and T. E. Petersen (1995). Posttranslational modifications of bovine osteopontin: Identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci. 4:2040-2049.

    Google Scholar 

  22. R. A. Saavedra, S. K. Kimbro, D.N. Stern, J. Schnuer, S. Ashkar, M. J. Glimcher, and C. I. Ljubetic (1995). Gene expression and phosphorylation of mouse osteopontin. Ann. N. Y. Acad. Sci. 760:35-43.

    Google Scholar 

  23. E. Salih, H. Y. Zhou, and M. J. Glimcher (1996). Phosphorylation of purified bone sialoprotein and osteopontin by protein kinases. J. Biol. Chem. 271:16897-16905.

    Google Scholar 

  24. S. Jono, C. Peinado, and C. M. Giachelli (2000). Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle calcification. J. Biol. Chem. 275:20197-20203.

    Google Scholar 

  25. C. W. Prince, D. Dickie, and C. L. Krumdieck (1991). Osteopontin, a substrate for transglutaminase and factor XIII activity. Biochem. Biophys. Res. Commun. 177:1205-1210.

    Google Scholar 

  26. E. S. Sorensen and T. E. Petersen (1995). Phosphorylation, glycosylation, and transglutaminase sites in bovine osteopontin. Ann. N. Y. Acad. Sci. 760:363-366.

    Google Scholar 

  27. M. T. Kaartinen, A. Pirhonen, A. Linnala-Kankkunen, and P. H. Maenpaa (1999). Cross-linking of osteopontin by tissue transglutaminase increases collagen binding properties. J. Biol. Chem. 274:1729-1735.

    Google Scholar 

  28. D. R. Senger, C. A. Perruzzi, A. Papadopoulos-Sergiou, and L. Van de Water (1994). Adhesive properties of osteopontin: Regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Mol. Biol. Cell 5:565-574.

    Google Scholar 

  29. D. R. Senger and C. A. Perruzzi (1996). Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochim. Biophys. Acta 1314:13-24.

    Google Scholar 

  30. S. T. Barry, S. B. Ludbrook, E. Murrison, and C. M. Horgan (2000). A regulated interaction between alpha5beta1 integrin and osteopontin. Biochem. Biophys. Res. Commun. 267:764-769.

    Google Scholar 

  31. O. Helluin, C. Chan, G. Vilaire, S. Mousa, W. F. DeGrado, and J. S. Bennett (2000). The activation state of alphavbeta3 regulates platelet and lymphocyte adhesion to intact and thrombin-cleaved osteopontin. J. Biol. Chem. 275:18337-18343.

    Google Scholar 

  32. Y. Yokasaki and D. Sheppard (2000). Mapping of the cryptic integrin-binding site in osteopontin suggests a new mechanism by which thrombin can regulate inflammation and tissue repair. Trends Cardiovasc. Med. 10:155-159.

    Google Scholar 

  33. S. R. Rittling and K. E. Novick (1997). Osteopontin expression in mammary gland development and tumorigenesis. Cell Growth Differ. 8:1061-1069.

    Google Scholar 

  34. M. G. Baik, M. J. Lee, and Y. J. Choi (1998). Gene expression during involution of mammary gland (review). Int. J. Mol. Med. 2:39-44.

    Google Scholar 

  35. M. Nemir, D. Bhattacharyya, X. Li, K. Singh, A. B. Mukherjee, and B. B. Mukherjee (2000). Targeted inhibition of osteopontin expression in the mammary gland causes abnormal morphogenesis and lactation deficiency. J. Biol. Chem. 275:969-976.

    Google Scholar 

  36. L. F. Brown, B. Berse, L. Van de Water, A. Papadopoulos-Sergiou, C. A. Perruzzi, E. J. Manseau, H. F. Dvorak, and D. R. Senger (1992). Expression and distribution of osteopontin in human tissues:Widespread association with luminal epithelial surfaces. Mol. Biol. Cell 3:1169-1180.

    Google Scholar 

  37. D. R. Senger, C.A. Perruzzi, A. Papadopoulos, and D.G. Tenen (1989). Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim. Biophys. Acta 996:43-48.

    Google Scholar 

  38. J.W. Xuan, C. Hota, and A. F. Chambers (1994). Recombinant GST-human osteopontin fusion protein is functional in RGDdependent cell adhesion. J. Cell. Biochem. 54:247-255.

    Google Scholar 

  39. J. W. Xuan, C. Hota, Y. Shigeyama, J. A. D'Errico, M. J. Somerman, and A. F. Chambers (1995). Site-directed mutagenesis of the argenine-glycine-aspartic acid sequence in osteopontin destroys cell adhesion and migration functions. J. Cell. Biochem. 57:680-690.

    Google Scholar 

  40. A. B. Tuck, B. E. Elliott, C. Hota, E. Tremblay, and A. F. Chambers (2000). Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J. Cell. Biochem. 78:465-475.

    Google Scholar 

  41. N. C. Wong, B. M. Mueller, C. F. Barbas, P. Ruminski, V. Quaranta, E.C. Lin, and J.W. Smith (1998). Alphav integrins mediate adhesion and migration of breast carcinoma cell lines. Clin. Exp. Metastasis 16:50-61.

    Google Scholar 

  42. L. L. Smith, H. K. Cheung, L. E. Ling, J. Chen, D. Shepard, R. Pytola, and C. M. Giachelli (1996). Osteopontin N-terminal domain contacts a cryptic adhesive sequence recognized by α9β1 integrin. J. Biol. Chem. 271:28485-28491.

    Google Scholar 

  43. S. Denda, L. F. Reichardt, and U. Müller (1998). Identification of osteopontin as a novel ligand for the integrin α8β1 and potential roles for this integrin-ligand interaction in kidney morphogenesis. Mol. Biol. Cell 9:1425-1435.

    Google Scholar 

  44. K. A. Bayless, G. A. Meininger, J. M. Scholtz, and G. E. Davis (1998). Osteopontin is a ligand for the α4β1 integrin. J. Cell Sci. 111:1165-1174.

    Google Scholar 

  45. H. Joensuu, P. J. Klemi, S. Toikkanen, and S. Jalkanen (1993). Glycoprotein CD44 expression and its association with survival in breast cancer. Am. J. Pathol. 143:867-874.

    Google Scholar 

  46. K. Friedrichs, F. Franke, B. W. Lisboa, G. Kugler, I. Gille, H. J. Terpe, F. Holzel, H. Maass, and U. Gunthert (1995). CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res. 55:5424-5433.

    Google Scholar 

  47. M. Kaufmann, K. H. Heider, H. P. Sinn, G. von Minckwitz, H. Ponta, and P. Herrlich (1995). CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet 345: 615-619.

    Google Scholar 

  48. A. Bankfalvi, H. J. Terpe, D. Breukelmann, B. Bier, D. Rempe, G. Pschadka, R. Krech, and W. Bocker (1998). Gains and losses of CD44 expression during breast carcinogenesis and tumour progression. Histopathology 33:107-116.

    Google Scholar 

  49. G. F. Weber, S. Ashkar, M. J. Glimcher, and H. Cantor (1996). Receptor-ligand interaction between CD44 and osteopontin (ETA-1). Science 271:509-512.

    Google Scholar 

  50. A. Herrera-Gayol and S. Jothy (1999). Adhesion proteins in the biology of breast cancer: Contribution of CD44. Exp. Mol. Pathol. 66:149-156.

    Google Scholar 

  51. J. A. Foekens, P. Dall, J.G. Klijn, P. Skroch-Angel, C. J. Claassen, M. P. Look, H. Ponta, W. L. Van Putten, P. Herrlich, and S. C. Henzen-Logmans (1999). Prognostic value of CD44 variant expression in primary breast cancer. Int. J. Cancer 84:209-215.

    Google Scholar 

  52. G. F. Weber, S. Ashkar, and H. Cantor (1997). Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc. Assoc. Am. Physicians 109:1-9.

    Google Scholar 

  53. Y. U. Katagiri, J. Sleeman, H. Fujii, P. Herrlich, H. Hotta, K. Tanaka, S. Chikuma, H. Yagita, K. Okumura, M. Murakami, I. Saiki, A. F. Chambers, and T. Uede (1999). CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycineaspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res. 59:219-226.

    Google Scholar 

  54. A. Herrera-Gayol and S. Jothy (1999). CD44 modulates Hs578T human breast cancer cell adhesion, migration, and invasiveness. Exp. Mol. Pathol. 66:99-108.

    Google Scholar 

  55. N. Harada, T. Mizoi, M. Kinouchi, K. Hoshi, S. Ishii, K. Shiiba, I. Sasaki, and S. Matsuno (2001). Introduction of antisense CD44s cDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int. J. Cancer 91:67-75.

    Google Scholar 

  56. L. Y. Bourguignon, Z. Gunja-Smith, N. Iida, H. B. Zhu, L. J. Young, W. J. Muller, and R. D. Cardiff (1998). CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J. Cell. Physiol. 176:206-215.

    Google Scholar 

  57. A. B. Tuck, B. E. Elliott, C. Hota, and A. F. Chambers (2001). Osteopontin-induced migration of human mammary epithelial cells involves at least two growth factor/receptor pathways and multiple different signal transduction pathways. Proc. Am. Assoc. Cancer Res. 42. (Abstract No. 775).

  58. L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli (1995). The adhesive and migratory functions of osteopontin are mediated via distinct cell surface integrins. Role of alphav beta3 in smooth muscle cell migration to osteopontin in vitro. J. Clin. Invest. 95:713-724.

    Google Scholar 

  59. I. Carey, C. L. Williams, D.K. Ways, and J.D. Noti (1999). Overexpression of protein kinase C-alpha in MCF-7 breast cancer cells results in differential regulation and expression of alphavbeta3 and alphavbeta5. Int. J. Oncol. 15:127-136.

    Google Scholar 

  60. J. D. Noti (2000). Adherence to osteopontin via alphavbeta3 suppresses phorbol ester-mediated apoptosis in MCF-7 breast cancer cells that overexpress protein kinase C-alpha. Int. J. Oncol. 17:1237-1243.

    Google Scholar 

  61. A. B. Tuck, C. Hota, and A. F. Chambers (2001). Osteopontin (OPN)-induced increase in human mammary epithelial cell invasiveness is urokinase (uPA)-dependent. Breast Cancer Res. Treat. 70:197-204.

    Google Scholar 

  62. P. A. Andreasen, L. Kjoller, L. Christensen, and M. J. Duffy (1997). The urokinase-type plasminogen activator system in cancer metastasis: A review. Int. J. Cancer 72:1-22.

    Google Scholar 

  63. J. L. Fisher, C. L. Field, H. Zhou, T. L. Harris, M.A. Henderson, and P. F. Choong (2000). Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastasesa comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Res. Treat. 61:1-12.

    Google Scholar 

  64. P. C. Brooks, S. Stromblad, L. C. Sanders, T. L. von Schalscha, R. T. Aimes, W. G. Stetler-Stevenson, J. P. Quigley, and D. A. Cheresh (1996). Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alphavbeta3. Cell 85:683-693.

    Google Scholar 

  65. P. Koistinen, T. Pulli, V. J. Uitto, L. Nissinen, T. Hyypia, and J. Heino (1999). Depletion of alphav integrins from osteosarcoma cells by intracellular antibody expression induces bone differentiation marker genes and suppresses gelatinase (MMP-2) synthesis. Matrix Biol. 18:239-251.

    Google Scholar 

  66. A. Teti, A. R. Farina, I. Villanova, A. Tiberio, A. Tacconelli, G. Sciotino, A. F. Chambers, A. Gulino, and A. R. Mackay (1998). Activation of MMP-2 by human GCT23 giant cell tumour cells induced by osteopontin, bone sialoprotein and GRGDSP peptide is RGD and cell shape change dependent. Int. J. Cancer 77:82-93.

    Google Scholar 

  67. E. I. Deryugina, M. A. Bourdon, K. Jungwirth, J. W. Smith, and A. Y. Strongin (2000). Functional activation of integrin alphavbeta3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int. J. Cancer 86:15-23.

    Google Scholar 

  68. M. Yebra, G.C. Parry, S. Stromblad, N. Mackman, S. Rosenberg, B. M. Mueller, and D. A. Cheresh (1996). Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration. J. Biol. Chem. 271:29393-29399.

    Google Scholar 

  69. M. V. Carriero, S. Del Vecchio, M. Capozzoli, P. Franco, L. Fontana, A. Zannetti, G. Botti, G. D'Aiuto, M. Salvatore, and M. P. Stoppelli (1999). Urokinase receptor interacts with alpha(v)beta5 vitronectin receptor, promoting urokinasedependent cell migration in breast cancer. Cancer Res. 59:5307-5314.

    Google Scholar 

  70. L. Liaw, M. Almeida, C. E. Hart, S. M. Schwartz, and C. M. Giachelli (1994). Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ. Res. 74:214-224.

    Google Scholar 

  71. L. Liaw, V. Lindner, S. M. Schwartz, A. F. Chambers, and C. M. Giachelli (1995). Osteopontin and β3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg-Gly-Asp-dependent endothelial migration in vitro. Circ. Res. 77:665-672.

    Google Scholar 

  72. F. Prols, B. Loser, and M. Marx (1998). Differential expression of osteopontin, PC4, and CEC5, a novel mRNA species, during in vitro angiogenesis. Exp. Cell Res. 239:1-10.

    Google Scholar 

  73. M. Scatena, M. Almeida, M. L. Chaisson, N. Fausto, R. F. Nicosia, and C. M. Giachelli (1998). NF-·B mediates αvβ3 integrin-induced endothelial cell survival. J. Cell Biol. 141:1083-1093.

    Google Scholar 

  74. U. M. Malyankar, M. Scatena, K. L. Suchland, T. J. Yun, E. A. Clark, and C. M. Giachelli (2000). Osteoprotegerin is an αvβ3-induced, NF-B-dependent survival factor for endothelial cells. J. Biol. Chem. 275:20959-20962.

    Google Scholar 

  75. N. Shijubo, T. Uede, S. Kon, M. Nagata and S. Abe (2000). Vascular endothelial growth factor and osteopontin in tumor biology. Crit. Rev. Oncog. 11:135-146.

    Google Scholar 

  76. D. R. Senger, S. R. Ledbetter, K. P. Claffey, A. Papadopoulos-Sergiou, C. A. Peruzzi, and M. Detmar (1996). Stimulation of endothelial cell migration by vascular permeability factor/ vascular endothelial growth factor through cooperative mechanisms involving the αvβ3 integrin, osteopontin, and thrombin. Am. J. Pathol. 149:293-305.

    Google Scholar 

  77. C. M. Giachelli, D. Lombardi, R. J. Johnson, C. E. Murray, and M. Almeida (1998). Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am. J. Pathol. 152:353-358.

    Google Scholar 

  78. S. Ashkar, G. F. Weber, V. Panoutsakopoulou, M. E. Sanchirico, M. Jansson, S. Zawaideh, S. R. Rittling, D. T. Denhardt, M. J. Glimcher, and H. Cantor (2000). ETA-1 (osteopontin): An early component of type-1 (cell-mediated) immunity. Science 287:860-864.

    Google Scholar 

  79. D. T. Denhardt and A. F. Chambers (1994). Overcoming obstacles to metastasisdefences against host defences: Osteopontin (OPN) as a shield against attack by cytotoxic host cells. J. Cell Biochem. 56:48-51.

    Google Scholar 

  80. N. S. Fedarko, B. Fohr, P. G. Robey, M. F. Young, and L. W. Fisher (2000). Factor H binding to bone sialoprotein and osteopontin enables tumor cell evasion of complement-mediated attack. J. Biol. Chem. 275:16666-16672.

    Google Scholar 

  81. H. C. Crawford, L. M. Matrisian, and L. Liaw (1998). Distinct roles of osteopontin in host defence activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Res. 58:5206-5215.

    Google Scholar 

  82. H. Nemoto, S.R. Rittling, H. Yoshitake, K. Furuya, T. Amagasa, K. Tsuji, A. Nifuji, D. T. Denhardt, and M. Noda (2001). Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. J. Bone Miner. Res. 16:652-659.

    Google Scholar 

  83. L. F. Brown, A. Papadopoulos-Sergiou, B. Berse, E. J. Manseau, K. Tognazzi, C. A. Peruzzi, H. F. Dvorak, and D. R. Senger (1994). Osteopontin expression and distribution in human carcinomas. Am. J. Pathol. 145:610-623.

    Google Scholar 

  84. A. Bellahcène and V. Castronovo (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am. J. Pathol. 146:95-100.

    Google Scholar 

  85. S. Hirota, A. Ito, J. Nagoshi, M. Takeda, A. Kurata, Y. Takatsuka, K. Kohri, S. Nomura, and Y. Kitamura (1995). Expression of bone matrix protein messenger ribonucleic acids in human breast cancers. Possible involvement of osteopontin in development of calcifying foci. Lab. Invest. 72:64-69.

    Google Scholar 

  86. M. T. Gillespie, R. J. Thomas, Z.Y. Pu, H. Zho, T. J. Martin, and D. M. Findlay (1997). Calcitonin receptors, bone sialoprotein and osteopontin are expressed in primary breast cancers. Int. J. Cancer 73:812-815.

    Google Scholar 

  87. A. B. Tuck, F. P. O'Malley, H. Singhal, J. F. Harris, K. S. Tonkin, N. Kerkvliet, Z. Saad, G. S. Doig, and A. F. Chambers (1998). Osteopontin expression in a group of lymph node negative breast cancer patients. Int. J. Cancer 79:502-508.

    Google Scholar 

  88. J. A. Sharp, V. Sung, J. Slavin, E. W. Thompson, and M. A. Henderson (1999). Tumor cells are the source of osteopontin and bone sialoprotein expression in human breast cancer. Lab. Invest. 79:869-877.

    Google Scholar 

  89. A. B. Tuck, F. P. O'Malley, H. Singhal, K. S. Tonkin, J. F. Harris, D. Bautista, and A. F. Chambers (1997). Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch. Pathol. Lab. Med. 121:578-584.

    Google Scholar 

  90. D. S. Bautista, Z. Saad, A. F. Chambers, K. S. Tonkin, F. P. O'Malley, H. Singhal, S. Tokmakejian, V. Bramwell, and J. F. Harris (1996). Quantification of osteopontin in human plasma with anELISA:Basal levels in pre-and postmenopausal women. Clin. Biochem. 29:231-239.

    Google Scholar 

  91. H. Singhal, D. S. Bautista, K. S. Tonkin, F. P. O'Malley, A. B. Tuck, A. F. Chambers, and J. F. Harris (1997). Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin. Cancer Res. 3:605-611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann F. Chambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuck, A.B., Chambers, A.F. The Role of Osteopontin in Breast Cancer: Clinical and Experimental Studies. J Mammary Gland Biol Neoplasia 6, 419–429 (2001). https://doi.org/10.1023/A:1014734930781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014734930781

Navigation