Skip to main content
Log in

Variations in Transmembrane Ca2+ Gradient and Apoptosis of Macrophages Induced by Oxidized Low Density Lipoprotein

  • Published:
Bioscience Reports

Abstract

While Ca2+ has been proposed to be a messenger in OxLDL-induced cell death, few studies have addressed the possibility that it may influence the occurrence of apoptosis and necrosis of macrophages induced by OxLDL in virtue of change of transmembrane Ca2+ gradient including that across plasma membrane and intracellular organelle membranes. In this paper, various lipophilic Ca2+ fluorescent indicators and specific organelle markers were used to study the relationship between the changes of the transmembrane Ca2+ gradients and the OxLDL induced apoptosis of macrophages. Our results showed that following exposure of low dose OxLDL to macrophages, the transmembrane Ca2+ gradient across the plasma membrane, as well as the membrane-proximal Ca2+ gradient, the transnuclear, and the transmitochondrial membrane Ca2+ gradient were all changed significantly. These data suggested that changes in transmembrane Ca2+ gradients might be involved in the apoptosis of macrophages induced by OxLDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Carafoli, E. (1987) Intracellular Calcium Homeostasis. Ann. Reû. Biochem. 56: 395–433.

    Google Scholar 

  2. Mooren, F. C. (1998) Kinne RKH Cellular calcium in health and disease. Biochim. Biophys. Acta 1406: 127–151.

    Google Scholar 

  3. Brown, E. M. Vassiler, P. M., and Herbert, S. C. (1995) Ca2??ions as extracellular messengers. Cell 83: 679–682.

    Google Scholar 

  4. Yang, F. Y., Huang, Y. G., and Tu, Y. P. (1995) Transmembrane Ca2??gradient and function of membrane proteins. Biooscience Rep. 15: 351–364.

    Google Scholar 

  5. Yang, X. Y., Fan, G. F., Huang, Y. G., and Yang, F. Y. (1996) Effect of transmembrane Ca2??gradient on ligand binding of reconstituted ????????adrenergic receptors. Chinese Science Bulletin 41: 1214–1218.

    Google Scholar 

  6. Fan, G. F., Huang, Y. G., Bai, Y. H., and Yang, F. Y. (1994) Effect of transmembrane Ca2??gradient on Gs function. FEBS Lett. 357: 13–15.

    Google Scholar 

  7. Fan, G. F., Yang, X. Y., Huang, Y. G., and Yang, F. Y. (1996) Effect of transmembrane Ca2??gradient on the coupling of ????????drenergic receptors and adenylyl cyclase. Bioscience Rep. 16: 327–341.

    Google Scholar 

  8. Yang, X. Y., Fan, G. F., Huang, Y. G., and Yang, F. Y. (1996) Effect of transmembrane Ca2??gradient on ligand binding of reconstituted ????????adrenergic receptors. Chinese Science Bulletin 41: 1214–1218.

    Google Scholar 

  9. Mitchinson, M. J., Hardwick, S. J., and Bennett, M. R. (1996) Cell death in atherosclerotic plaques. Curr. Opin. Lipidol. 7: 324–329.

    Google Scholar 

  10. Geng, Y. J. (1997) Regulation of programmed cell death or apoptosis in atherosclerosis. Heart Vessels 12 (Suppl): 76–80.

    Google Scholar 

  11. Bjorkerud, S. and Bjorerud, B. (1996) Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am. J. Pathol. 149: 367–380.

    Google Scholar 

  12. Meilhac, O., Escargueil-Blanc, I., Thiers, J. C., Salvayre, R., and Negre-Salvayre, A. (1999) Bcl-2 alters the balance between apoptosis and necrosis, but does not prevent cell death induced by oxidized low density lipoproteins. FASEB J. 13: 485–494.

    Google Scholar 

  13. Reid, V. C. and Mitchinson, M. J. (1993) Toxicity of oxidized low density lipoprotein towards mouse peritoneal macrophages in ûitro. Atherosclerosis 98: 17–24.

    Google Scholar 

  14. Reid, V. C., Hardwick, S. J., and Mitchinson, M. J. (1993) Fragmentation of DNA in P388D1 macrophages exposed to oxidized low-density lipoprotein. FEBS Lett. 332: 218–220.

    Google Scholar 

  15. Reid, V. C., Mitchinson, M. J., and Skepper, J. N. (1993) Cytotoxicity of oxidized low-density lipoprotein to mouse peritoneal macrophages: an ultrastructural study. J. Pathol. 171: 321–328.

    Google Scholar 

  16. Kinscherf, R. et al. (1998) Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J. 12: 461–467.

    Google Scholar 

  17. Stewart-Phillips, J. L., Lough, J., and Skamene, E. (1988) Genetically determined susceptibility and resistance to diet-induced atherosclerosis in inbred strains of mice. J. Lab. Clin. Med. 112: 36–42.

    Google Scholar 

  18. Paigen, B., Morrow, A., Brandon, C., Mitchell, D., and Holmes, P. (1985) Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57: 65–73.

    Google Scholar 

  19. Havel, R. I., Eder, H. A., and Braigon, J. H. (1955) The distribution and the chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Inûest. 39: 1345–1363.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  21. Kosugi, K., Morel, D. W., and DiCorleto, P. E., (1987) Chisholm GM Toxicity of oxidized LDL to cultured fibroblasts is selective for S phase of the cell cycle. J. Cell Physiol. 130: 311–320.

    Google Scholar 

  22. Yagi, K. (1985) Lipid peroxides and human diseases. Chem. Phys. Lipids 45: 337–351.

    Google Scholar 

  23. Rees, D., Sloane, T., Jessup, W., and Dean, R. T. (1999) Kritharides L Apolipoprotein A-I stimulates secretion of apolipoprotein E by foam cell macrophages. J. Biol. Chem. 274: 27925–27933.

    Google Scholar 

  24. Dive, C., Gregory, C. D., Phipps, D. J., Evans, D. L., Milner, A. E., and Wyllie, A. H. (1992) Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim. Biophys. Acta. 1133: 275–285.

    Google Scholar 

  25. Darzynkiewicz, Z., et al. (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13: 795–808.

    Google Scholar 

  26. Lloyd, Q. P., Kuhn, M. A., and Gay, C. V. (1995) Characterization of calcium translocation across the plasma membrane of primary osteoblasts using a lipophilic calcium-sensitive fluorescent dye, calcium green C??. J. Biol. Chem. 270: 22445–22451.

    Google Scholar 

  27. Tanimura, A. and Turner, R. J. (1996) Inositol 1,4,5-triphosphate-dependent oscillations of luminal [Ca2?] in permeabilized HSY cells. J. Biol. Chem. 271: 30904–30908.

    Google Scholar 

  28. Donnadieu, E. and Bourguignon, L. Y. W. (1996) Ca2??signaling in endothelial cells stimulated by bradykinin: Ca2??measurement in the mitochondria and the cytosol by confocal microscopy. Cell Calcium 20: 53–61.

    Google Scholar 

  29. Yang, X. Y., Yan, K., and Huang, Y. G. (1996) A powerful method for the determination of the spatial and temporal changes of intracellular Ca2??in single macrophages by laser Scanning Confocal Microscopy. Prog. Biochem. Biophys. 23: 442–445.

    Google Scholar 

  30. Hernandez-Cruz, A., Sala, F., and Adams, P. R. (1990) Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron. Science 247: 858–862.

    Google Scholar 

  31. Herrington, J., Park, Y. B., Babcock, D. F., and Hille, B. (1996) Dominant role of mitochondria in clearance of large Ca2??loads from rat adrenal chromaffin cells. Neuron 16: 219–228.

    Google Scholar 

  32. Park, Y. B., Herrington, J., Babcock, D. F., and Hille, B. (1996) Ca2??clearance mechanisms in isolated rat adrenal chromaffin cells. J. Physiol. 492: 329–346.

    Google Scholar 

  33. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2??indiatrs with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450.

    Google Scholar 

  34. Eberhard, M. and Erne, P. (1991) Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson. Biochem. Biophys. Res. Commun. 180: 209–215.

    Google Scholar 

  35. Ylitalo, R., Jaakkola, O., Lehtolainen, P., and Yla-Herttuala, S. (1999) Metabolism of modified LDL and form cell formation in murine macrophage-like RAW 264 cells. Life Sci. 64: 1955–1965.

    Google Scholar 

  36. Yang, X. Y., Zhong, Y. Z., Huang, Y. G., and Yang, F. Y. (2000) Changes of transmembrane Ca2??gradient in the formation of macrophage-derived foam cells. Biosci. Rep. 20: 1–12.

    Google Scholar 

  37. Etter, E. F., Kuhn, M. A., and Fay, F. S. (1994) Detection of changes in near-membrane Ca2??concentration using a novel membrane-associated Ca2??indicator. J. Biol. Chem. 269: 10141–10149.

    Google Scholar 

  38. Etter, E. F., Minta, A., Poenie, M., and Fay, F. S. (1996) Near-membrane [Ca2?] transients resolved using the Ca2??indicator FFP18. Proc. Natl. Acad. Sci. USA 93: 5368–5373.

    Google Scholar 

  39. Davies, E. V. and Hallet, M. B. (1996) Near membrane Ca2??changes resulting from store release in neutrophils: detection by FFP-18. Cell Calcium 19: 355–362.

    Google Scholar 

  40. Tojyo, Y., Tanimura, A., and Matsumoto, Y. (1997) Monitoring of Ca2??release from intracellular stores in permeabilized rat parotid acinar cells using the fluorescent indicators Mag-fura-2 and calcium green C??. Biochem. Biophys. Res. Commun. 240: 189–195.

    Google Scholar 

  41. Lin, C. P., Lynch, M. C., and Kochevar, I. E. (2000) Reactive oxidizing species produced near the plasma membrane induce apoptosis in bovine aorta endothelial cells. Exp. Cell Res. 259: 351–359.

    Google Scholar 

  42. Yang, X. Y., Tan, J. M., Huang, Y. G., and Yang, F. Y. (1997) The correlation of transmembrane Ca2??gradients and Ca2??oscillation in single macrophages. Prog. Natural Sciences 7: 438–442.

    Google Scholar 

  43. Santella, L. and Carafoli, E. (1997) Calcium signaling in the cell nucleus. FASEB J. 11: 1091–1109.

    Google Scholar 

  44. Himpens, B., De Smedt, H., Droogmans, G., and Casteels, R. (1992). Differences in regulation between the nuclear and cytoplasmic Ca2??in DDT1MF2 smooth muscle cells. Am. J. Physiol. 263: C95-C105.

    Google Scholar 

  45. Himpens, B., Missiaen, L., and Casteels, R. (1995) Ca2??homeostasis in vascular smooth muscle. J. Vasc. Res. 32: 207–219.

    Google Scholar 

  46. Himpens, S., De Smedt, H., and Casteels, R. (1994) Relationship between [Ca2?] changes in nucleus and cytosol. Cell Calcium. 16: 239–246.

    Google Scholar 

  47. Nicotera, P., Zhivotovsky, B., and Orrenius, S. (1994) Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium 16: 279–288.

    Google Scholar 

  48. Kruman, I. I. and Mattson, M. P. (1999) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72: 529–540.

    Google Scholar 

  49. Sheu, S. S. and Jou, M. J. (1994) Mirochondrial free Ca2??concentration in living cells. J. Bioenerg. Biomembr. 26: 487–493.

    Google Scholar 

  50. Jou, M. J. and Sheu, S. S. (1992) Mitochondrial regulation of cytosolic Ca2??in cultured neonatal rat ventricular mytocytes. Biophys. J. 61: 164.

    Google Scholar 

  51. Jiang, S., Chow, S. C., Nicotera, P., and Orrenius, S. (1994) Intracellular Ca2??signals activate apoptosis in thymocytes: Studies using the Ca2?-ATPase inhibitor thapsigargin. Exp. Cell. Res. 212: 84–92.

    Google Scholar 

  52. Martens, J. S., Lougheed, M., Gomez-Munoz, A., and Steinbrecher, U. P. (1999) A modification of apolipoprotein B accounts for most of the induction of macrophage growth by oxidized low density lipoprotein. J. Biol. Chem. 274: 10903–10910.

    Google Scholar 

  53. Nicotera, P. and Orrenius, S. (1998) The role of calcium in apoptosis. Cell Calcium 23: 173–180.

    Google Scholar 

  54. Escargueil-Blanc, I., Salvayre, R., and Negre-Salvayre, A. (1994) Necrosis and apoptosis induced by oxidized low density lipoproteins occur through two calcium-dependent pathways in lymphoblastoid cells. FASEB J. 8: 1075–1080.

    Google Scholar 

  55. Matsumura, T. et al. (1997) Two intracellular signaling pathways for activation of protein kinase C are involved in oxidized low-density lipoprotein-induced macrophage growth. Arterioscler. Thromb. Vasc. Biol. 17: 3013–3020.

    Google Scholar 

  56. Borutaite, V., Morkuniene, R., and Brown, G. C. (1999) Release of cytochrome c from heart mitochondria is induced by high Ca2??and peroxynitrite and is responsible for Ca2?-induced inhibition of substrate oxidation. Biocheim. Biophys. Acta 1453: 41–48.

    Google Scholar 

  57. Perez-Terzic, C., Pyle, J., Jaconi, M., Stehno-Bittel, L., and Clapham, D. E. (1996) Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2??stores. Science 273: 1875–1877.

    Google Scholar 

  58. Perez-Terzic, C., Stehno-Bittel, L., and Clapham, D. E. (1997) Nucleoplasmic and cytoplasmic differences in the fluorescence properties of the calcium indicator Fluo-3. Cell Calcium 21: 275–282.

    Google Scholar 

  59. Stehno-Bittel, L., Luckoff, A., and Clapham, D. E. (1995) Calcium release from the nucleus by InsP3 receptor channels. Neuron. 14: 163–167.

    Google Scholar 

  60. Bolsover, S. R., Kater, S. B., and Guthrie, P. B. (1996) Spatial gradients of cytosolic calcium concentration in neurones during paradoxical activation by calcium. Cell Calcium. 20: 373–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Zhang, Y., Huang, Y. et al. Variations in Transmembrane Ca2+ Gradient and Apoptosis of Macrophages Induced by Oxidized Low Density Lipoprotein. Biosci Rep 21, 667–681 (2001). https://doi.org/10.1023/A:1014725127189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014725127189

Navigation